Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1328897, 2023.
Article in English | MEDLINE | ID: mdl-38239348

ABSTRACT

Schistosomiasis is an intravascular infectious disease that impacts over 200 million people globally. In its chronic stage, it leads to mesenteric inflammation with significant involvement of monocytes/macrophages. Endothelial cells lining the vessel lumens play a crucial role, and mount of evidence links this disease to a downregulation of endoprotective cell signaling favoring a primed and proinflammatory endothelial cell phenotype and therefore the loss of immunovascular homeostasis. One hallmark of infectious and inflammatory conditions is the release of nucleotides into the extracellular milieu, which, in turn, act as innate messengers, activating purinergic receptors and triggering cell-to-cell communication. ATP influences the progression of various diseases through P2X and P2Y purinergic receptor subtypes. Among these receptors, P2Y2 (P2Y2R) and P2X7 (P2X7R) receptors stand out, known for their roles in inflammation. However, their specific role in schistosomiasis has remained largely unexplored. Therefore, we hypothesized that endothelial P2Y2R and P2X7R could contribute to monocyte adhesion to mesenteric endothelial cells in schistosomiasis. Using a preclinical murine model of schistosomiasis associated with endothelial dysfunction and age-matched control mice, we showed that endothelial P2Y2R and P2X7R activation increased monocyte adhesion to cultured primary endothelial cells in both groups. However, a distinct upregulation of endothelial P2Y2R-driven canonical Ca2+ signaling was observed in the infected group, amplifying adhesion. In the control group, the coactivation of endothelial P2Y2R and P2X7R did not alter the maximal monocyte adhesion induced by each receptor individually. However, in the infected group, this coactivation induced a distinct upregulation of P2Y2R-P2X7R-driven canonical signaling, IL-1ß release, and VCAM-1 expression, with underlying mechanisms involving inflammasome and NF-κB signaling. Therefore, current data suggest that schistosomiasis alters endothelial cell P2Y2R/P2X7R signaling during inflammation. These discoveries advance our understanding of schistosomiasis. This intricate interplay, driven by PAMP-triggered endothelial P2Y2R/P2X7R cross-talk, emerges as a potential key player in the mesenteric inflammation during schistosomiasis.


Subject(s)
NF-kappa B , Schistosomiasis , Animals , Humans , Mice , Cell Adhesion , Endothelial Cells/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Schistosomiasis/metabolism , Signal Transduction/physiology
2.
Purinergic Signal ; 16(4): 561-572, 2020 12.
Article in English | MEDLINE | ID: mdl-33090332

ABSTRACT

Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-inflammatory cytokines (i.e., IL-1ß) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7-/-) mice. The oxidative stress in the liver of septic mice was assessed by 2',7'-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive substances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT) and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of inflammatory cytokines and chemokines by RT-qPCR. We observed an increase in the reactive species and lipid peroxidation in the liver of septic WT mice, but not in the liver from P2X7-/- animals. We found an imbalance SOD/CAT ratio, also only WT septic animals. The number of inflammatory cells and the gene expression of IL-1 ß, IL-6, TNF-α, IL-10, CXCL1, and CXCL2 were higher in the liver of WT septic mice in comparison to P2X7-/- septic animals. In summary, our results suggest that the P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.


Subject(s)
Liver Diseases/metabolism , Oxidative Stress/physiology , Receptors, Purinergic P2X7/metabolism , Sepsis/metabolism , Sepsis/pathology , Animals , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Front Pharmacol ; 11: 301, 2020.
Article in English | MEDLINE | ID: mdl-32256366

ABSTRACT

Silicosis is an occupational lung disease caused by inhalation of silica particles. It is characterized by intense lung inflammation, with progressive and irreversible fibrosis, leading to impaired lung function. Purinergic signaling modulates silica-induced lung inflammation and fibrosis through P2X7 receptor. In the present study, we investigate the role of P2Y12, the G-protein-coupled subfamily prototype of P2 receptor class in silicosis. To that end, BALB/c mice received an intratracheal injection of PBS or silica particles (20 mg), without or with P2Y12 receptor blockade by clopidogrel (20 mg/kg body weight by gavage every 48 h) - groups CTRL, SIL, and SIL + Clopi, respectively. After 14 days, lung mechanics were determined by the end-inflation occlusion method. Lung histology was analyzed, and lung parenchyma production of nitric oxide and cytokines (IL-1ß, IL-6, TNF-α, and TGF-ß) were determined. Silica injection reduced animal survival and increased all lung mechanical parameters in relation to CTRL, followed by diffuse lung parenchyma inflammation, increased neutrophil infiltration, collagen deposition and increased pro-inflammatory and pro-fibrogenic cytokine secretion, as well as increased nitrite production. Clopidogrel treatment prevented silica-induced changes in lung function, and significantly reduced lung inflammation, fibrosis, as well as cytokine and nitrite production. These data suggest that inhibition of P2Y12 signaling improves silica-induced lung inflammation, preventing lung functional changes and mortality. Our results corroborate previous observations of silica-induced lung changes and expand the understanding of purinergic signaling in this process.

4.
Biochim Biophys Acta Gen Subj ; 1864(1): 129461, 2020 01.
Article in English | MEDLINE | ID: mdl-31676289

ABSTRACT

BACKGROUD: The mechanism by which monosodium urate (MSU) crystals induce inflammation is not completely understood. Few studies have shown that MSU is capable of stimulating the release of IL-1ß in the absence of LPS treatment. The purinergic P2X7 receptor is involved in the release of IL-1ß in inflammatory settings caused by crystals, as is the case in silicosis. METHODS: We investigated the role of P2X7 receptor in sterile MSU-induced inflammation by evaluating peritonitis and paw edema. In in vitro models, we performed the experiments using peritoneal macrophages and THP-1 cells. We measured inflammatory parameters using ELISA and immunoblotting. We measured cell recruitment using cell phenotypic identification and hemocytometer counts. RESULTS: Our in vivo data showed that animals without P2X7 receptors generated less paw edema, less cell recruitment, and lower levels of IL-1ß release in a peritonitis model. In the in vitro model, we observed that MSU induced dye uptake by the P2X7 receptor. In the absence of the receptor, or when it was blocked, MSU crystals induced less IL-1ß release and this effect corresponded to the concentration of extracellular ATP. Moreover, MSU treatment induced HMGB1 release; pre-treatment with P2X7 antagonist reduced the amount of HMGB1 in cell supernatants. CONCLUSIONS: IL-1ß secretion induced by MSU depends on P2X7 receptor activation and involves HMGB1 release. GENERAL SIGNIFICANCE: We propose that cell activation caused by MSU crystals induces peritoneal macrophages and THP-1 cells to release ATP and HMGB1, causing IL-1ß secretion via P2X7 receptor activation.


Subject(s)
HMGB1 Protein/genetics , Inflammation/genetics , Interleukin-1beta/genetics , Receptors, Purinergic P2X7/genetics , Uric Acid/toxicity , Adenosine Triphosphate/genetics , Animals , Disease Models, Animal , Edema/chemically induced , Edema/genetics , Edema/pathology , Humans , Inflammation/chemically induced , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Mice , Peritonitis/chemically induced , Peritonitis/genetics , Peritonitis/pathology , Silicosis/genetics , Silicosis/pathology , THP-1 Cells , Uric Acid/chemistry
5.
Immunobiology ; 224(1): 50-59, 2019 01.
Article in English | MEDLINE | ID: mdl-30429052

ABSTRACT

The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1ß secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1ß secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1ß, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1ß production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.


Subject(s)
Bacteroidaceae Infections/immunology , Leukocytes/immunology , Macrophages/immunology , Porphyromonas gingivalis/physiology , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Animals , Autocrine Communication , Caspase 1/genetics , Caspase 1/metabolism , Caspases/genetics , Caspases/metabolism , Caspases, Initiator , Cell Movement , Cells, Cultured , Disease Models, Animal , Humans , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Receptors, Purinergic P2X7/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...