Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 28(4): 592-605, 2018 04.
Article in English | MEDLINE | ID: mdl-29572359

ABSTRACT

The identification of transcription factor (TF) binding sites in the genome is critical to understanding gene regulatory networks (GRNs). While ChIP-seq is commonly used to identify TF targets, it requires specific ChIP-grade antibodies and high cell numbers, often limiting its applicability. DNA adenine methyltransferase identification (DamID), developed and widely used in Drosophila, is a distinct technology to investigate protein-DNA interactions. Unlike ChIP-seq, it does not require antibodies, precipitation steps, or chemical protein-DNA crosslinking, but to date it has been seldom used in mammalian cells due to technical limitations. Here we describe an optimized DamID method coupled with next-generation sequencing (DamID-seq) in mouse cells and demonstrate the identification of the binding sites of two TFs, POU5F1 (also known as OCT4) and SOX2, in as few as 1000 embryonic stem cells (ESCs) and neural stem cells (NSCs), respectively. Furthermore, we have applied this technique in vivo for the first time in mammals. POU5F1 DamID-seq in the gastrulating mouse embryo at 7.5 d post coitum (dpc) successfully identified multiple POU5F1 binding sites proximal to genes involved in embryo development, neural tube formation, and mesoderm-cardiac tissue development, consistent with the pivotal role of this TF in post-implantation embryo. This technology paves the way to unprecedented investigation of TF-DNA interactions and GRNs in specific cell types of limited availability in mammals, including in vivo samples.


Subject(s)
Genome/genetics , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , Transcription Factors/genetics , Animals , Binding Sites/genetics , Embryonic Stem Cells/metabolism , Gene Regulatory Networks/genetics , Mice , Neural Stem Cells/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
2.
PLoS One ; 11(10): e0163244, 2016.
Article in English | MEDLINE | ID: mdl-27723793

ABSTRACT

Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3ß are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3ß are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.


Subject(s)
Cell Differentiation , MAP Kinase Signaling System , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/enzymology , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , Animals , Cell Culture Techniques , Enzyme Activation , Mice , Reactive Oxygen Species/metabolism
3.
Mech Dev ; 141: 32-39, 2016 08.
Article in English | MEDLINE | ID: mdl-27373508

ABSTRACT

The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment, and inappropriate concentrations of amino acids, or the loss of amino acid-sensing mechanisms, can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells, a cell population derived from the blastocyst, has been shown in culture. l-proline acts as a signalling molecule, exerting its effects through cell uptake and subsequent metabolism. Uptake in ES cells occurs predominantly through the sodium-coupled neutral amino acid transporter 2, Slc38a2 (SNAT2). Dynamic expression of amino acid transporters has been shown in the early mammalian embryo, reflecting functional roles for amino acids in embryogenesis. The expression of SNAT2 and family member Slc38a1 (SNAT1) was determined in mouse embryos from the 2-cell stage through to the early post-implantation pre-gastrulation embryo. Key changes in expression were validated in cell culture models of development. Both transporters showed temporal dynamic expression patterns and changes in intracellular localisation as differentiation progressed. Changes in transporter expression likely reflect different amino acid requirements during development. Findings include the differential expression of SNAT1 in the inner and outer cells of the compacted morula and nuclear localisation of SNAT2 in the trophectoderm and placental lineages. Furthermore, SNAT2 expression was up-regulated in the epiblast prior to primitive ectoderm formation, an expression pattern consistent with a role for the transporter in later developmental decisions within the pluripotent lineage. We propose that the differential expression of SNAT2 in the epiblast provides evidence for an l-proline-mediated mechanism contributing to the regulation of embryonic development.


Subject(s)
Amino Acid Transport System A/genetics , Cell Differentiation/genetics , Embryonic Development/genetics , Mouse Embryonic Stem Cells , Animals , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mice , Pluripotent Stem Cells/metabolism , Proline/metabolism , Stem Cell Niche/genetics
4.
Reprod Fertil Dev ; 26(5): 703-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23759283

ABSTRACT

Human embryonic stem (ES) cells have been proposed as a renewable source of pluripotent cells that can be differentiated into various cell types for use in research, drug discovery and in the emerging area of regenerative medicine. Exploitation of this potential will require the development of ES cell culture conditions that promote pluripotency and a normal cell metabolism, and quality control parameters that measure these outcomes. There is, however, relatively little known about the metabolism of pluripotent cells or the impact of culture environment and differentiation on their metabolic pathways. The effect of two commonly used medium supplements and cell differentiation on metabolic indicators in human ES cells were examined. Medium modifications and differentiation were compared in a chemically defined and feeder-independent culture system. Adding serum increased glucose utilisation and altered amino acid turnover by the cells, as well as inducing a small proportion of the cells to differentiate. Cell differentiation could be mitigated by inhibiting p38 mitogen-activated protein kinase (p38 MAPK activity). The addition of Knockout Serum Replacer also increased glucose uptake and changed amino acid turnover by the cells. These changes were distinct from those induced by serum and occurred in the absence of detectable differentiation. Induction of differentiation by bone morphogenetic protein 4 (BMP4), in contrast, did not alter metabolite turnover. Deviations from metabolite turnover by ES cells in fully defined medium demonstrated that culture environment can alter metabolite use. The challenge remains to understand the impact of metabolic changes on long-term cell maintenance and the functionality of derived cell populations.


Subject(s)
Amino Acids/metabolism , Carbohydrate Metabolism/physiology , Culture Media , Embryonic Stem Cells/metabolism , Glucose/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Line , Embryonic Stem Cells/cytology , Humans
5.
Am J Physiol Cell Physiol ; 300(6): C1270-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21346154

ABSTRACT

There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.


Subject(s)
Amino Acid Transport System A/metabolism , Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Proline/metabolism , Amino Acid Transport System A/genetics , Amino Acids/metabolism , Animals , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Embryo, Mammalian/physiology , Embryonic Stem Cells/cytology , Mice
6.
Am J Physiol Cell Physiol ; 298(5): C982-92, 2010 May.
Article in English | MEDLINE | ID: mdl-20164384

ABSTRACT

The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Proline/pharmacology , Animals , Cell Line , Gene Expression Regulation , Glycine/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Leucine/pharmacology , Mice , Proline/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...