Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33045061

ABSTRACT

Inhibitory signals through the PD-1 pathway regulate T cell activation, T cell tolerance, and T cell exhaustion. Studies of PD-1 function have focused primarily on effector T cells. Far less is known about PD-1 function in regulatory T (T reg) cells. To study the role of PD-1 in T reg cells, we generated mice that selectively lack PD-1 in T reg cells. PD-1-deficient T reg cells exhibit an activated phenotype and enhanced immunosuppressive function. The in vivo significance of the potent suppressive capacity of PD-1-deficient T reg cells is illustrated by ameliorated experimental autoimmune encephalomyelitis (EAE) and protection from diabetes in nonobese diabetic (NOD) mice lacking PD-1 selectively in T reg cells. We identified reduced signaling through the PI3K-AKT pathway as a mechanism underlying the enhanced suppressive capacity of PD-1-deficient T reg cells. Our findings demonstrate that cell-intrinsic PD-1 restraint of T reg cells is a significant mechanism by which PD-1 inhibitory signals regulate T cell tolerance and autoimmunity.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immune Tolerance , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Diabetes Mellitus, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Mice , Mice, Inbred NOD , Mice, Neurologic Mutants , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Programmed Cell Death 1 Receptor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/genetics
2.
Immunohorizons ; 2(7): 238-250, 2018 08 27.
Article in English | MEDLINE | ID: mdl-31022694

ABSTRACT

CD160 promotes NK cell cytotoxicity and IFN-γ production, but the function of CD160 on CD8+ T cells remains unclear with some studies supporting a coinhibitory role and others a costimulatory role. In this study, we demonstrate that CD160 has a costimulatory role in promoting CD8+ T cell effector functions needed for optimal clearance of oral Listeria monocytogenes infection. CD160-/- mice did not clear oral L. monocytogenes as efficiently as wild type (WT) littermates. WT RAG-/- and CD160-/- RAG-/- mice similarly cleared L. monocytogenes, indicating that CD160 on NK cells does not contribute to impaired L. monocytogenes clearance. Defective L. monocytogenes clearance is due to compromised intraepithelial lymphocytes and CD8+ T cell functions. There was a reduction in the frequencies of granzyme B-expressing intraepithelial lymphocytes in L. monocytogenes-infected CD160-/- mice as compared with WT littermate controls. Similarly, the frequencies of granzyme B-expressing splenic CD8+ T cells and IFN-γ and TNF-α double-producer CD8+ T cells were significantly reduced in L. monocytogenes-infected CD160-/- mice compared with WT littermates. Adoptive transfer studies showed that RAG-/- recipients receiving CD160-/- CD8+ T cells had a higher mortality, exhibited more weight loss, and had a higher bacterial burden compared with RAG-/- recipients receiving WT CD8+ T cells. These findings demonstrate that CD160 provides costimulatory signals to CD8+ T cells needed for optimal CD8+ T cell responses and protective immunity during an acute mucosal bacterial infection.


Subject(s)
Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Listeria monocytogenes/immunology , Microbiota/immunology , Receptors, Immunologic/immunology , Animals , Antigens, CD/biosynthesis , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/immunology , Immunity, Mucosal/immunology , Listeriosis/immunology , Listeriosis/prevention & control , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Immunologic/biosynthesis , Receptors, Immunologic/deficiency , Spleen/immunology
3.
Cell Rep ; 17(8): 2042-2059, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851967

ABSTRACT

The three-dimensional configuration of DNA is integral to all nuclear processes in eukaryotes, yet our knowledge of the chromosome architecture is still limited. Genome-wide chromosome conformation capture studies have uncovered features of chromatin organization in cultured cells, but genome architecture in human tissues has yet to be explored. Here, we report the most comprehensive survey to date of chromatin organization in human tissues. Through integrative analysis of chromatin contact maps in 21 primary human tissues and cell types, we find topologically associating domains highly conserved in different tissues. We also discover genomic regions that exhibit unusually high levels of local chromatin interactions. These frequently interacting regions (FIREs) are enriched for super-enhancers and are near tissue-specifically expressed genes. They display strong tissue-specificity in local chromatin interactions. Additionally, FIRE formation is partially dependent on CTCF and the Cohesin complex. We further show that FIREs can help annotate the function of non-coding sequence variants.


Subject(s)
Chromatin/metabolism , Genome, Human , Adult , Animals , Cell Cycle Proteins/metabolism , Cell Line , Chromosomal Proteins, Non-Histone/metabolism , Conserved Sequence , Disease/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genome-Wide Association Study , Humans , Insulator Elements/genetics , Mice , Nucleic Acid Conformation , Organ Specificity , Polymorphism, Single Nucleotide/genetics , Cohesins
4.
Cell Rep ; 12(2): 163-71, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26146074

ABSTRACT

Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice.


Subject(s)
Aging , Antibody Formation/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Antigens/immunology , CD28 Antigens/deficiency , CD28 Antigens/genetics , Immunity, Humoral , Inducible T-Cell Co-Stimulator Protein/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Peyer's Patches/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology
5.
Sci Transl Med ; 5(206): 206ra139, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24107778

ABSTRACT

Interstitial lung disease (ILD) is a complex and heterogeneous disorder that is often associated with autoimmune syndromes. Despite the connection between ILD and autoimmunity, it remains unclear whether ILD can develop from an autoimmune response that specifically targets the lung parenchyma. We examined a severe form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), and established a strong link between an autoimmune response to the lung-specific protein BPIFB1 (bactericidal/permeability-increasing fold-containing B1) and clinical ILD. Screening of a large cohort of APS1 patients revealed autoantibodies to BPIFB1 in 9.6% of APS1 subjects overall and in 100% of APS1 subjects with ILD. Further investigation of ILD outside the APS1 disorder revealed BPIFB1 autoantibodies present in 14.6% of patients with connective tissue disease-associated ILD and in 12.0% of patients with idiopathic ILD. The animal model for APS1, Aire⁻/⁻ mice, harbors autoantibodies to a similar lung antigen (BPIFB9); these autoantibodies are a marker for ILD. We found that a defect in thymic tolerance was responsible for the production of BPIFB9 autoantibodies and the development of ILD. We also found that immunoreactivity targeting BPIFB1 independent of a defect in Aire also led to ILD, consistent with our discovery of BPIFB1 autoantibodies in non-APS1 patients. Overall, our results demonstrate that autoimmunity targeting the lung-specific antigen BPIFB1 may contribute to the pathogenesis of ILD in patients with APS1 and in subsets of patients with non-APS1 ILD, demonstrating the role of lung-specific autoimmunity in the genesis of ILD.


Subject(s)
Autoantigens/immunology , Carrier Proteins/metabolism , Glycoproteins/metabolism , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung/immunology , Lung/pathology , Proteins/metabolism , Adoptive Transfer , Animals , Autoantibodies/immunology , Autoantigens/metabolism , Autoimmunity/immunology , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , Fatty Acid-Binding Proteins , Genotype , Humans , Immune Tolerance/immunology , Mice , Organ Specificity , Polyendocrinopathies, Autoimmune/immunology , Radioligand Assay , Reproducibility of Results , Thymus Gland/immunology , Thymus Gland/transplantation , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
6.
Sci Transl Med ; 1(9): 9ra20, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-20368189

ABSTRACT

Interstitial lung disease (ILD) is a common manifestation of systemic autoimmunity characterized by progressive inflammation or scarring of the lungs. Patients who develop these complications can exhibit significantly impaired gas exchange that may result in hypoxemia, pulmonary hypertension, and even death. Unfortunately, little is understood about how these diseases arise, including the role of specific defects in immune tolerance. Another key question is whether autoimmune responses targeting the lung parenchyma are critical to ILD pathogenesis, including that of isolated idiopathic forms. We show that a specific defect in central tolerance brought about by mutations in the autoimmune regulator gene (Aire) leads to an autoreactive T cell response to a lung antigen named vomeromodulin and the development of ILD. We found that a human patient and mice with defects in Aire develop similar lung pathology, demonstrating that the AIRE-deficient model of autoimmunity is a suitable translational system in which to unravel fundamental mechanisms of ILD pathogenesis.


Subject(s)
Adaptation, Physiological , Autoantigens/analysis , Lung Diseases, Interstitial/immunology , Animals , Lung Diseases, Interstitial/physiopathology , Mice , Transcription Factors/genetics , Transcription Factors/physiology , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...