Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1328075, 2024.
Article in English | MEDLINE | ID: mdl-38362454

ABSTRACT

In order to effectively support wheat breeding, farmland ridge segmentation can be used to visualize the size and spacing of a wheat field. At the same time, accurate ridge information collecting can deliver useful data support for farmland management. However, in the farming ridge segmentation scenarios based on remote sensing photos, the commonly used semantic segmentation methods tend to overlook the ridge edges and ridge strip features, which impair the segmentation effect. In order to efficiently collect ridge information, this paper proposes a segmentation method based on encoder-decoder of network with strip pooling module and ASPP module. First, in order to extract context information for multi-scale features, ASPP module are integrated in the deepest feature map. Second, the remote dependence of the ridge features is improved in both horizontal and vertical directions by using the strip pooling module. The final segmentation map is generated by fusing the boundary features and semantic features using an encoder and decoder architecture. As a result, the accuracy of the proposed method in the validation set is 98.0% and mIoU is 94.6%. The results of the experiments demonstrate that the method suggested in this paper can precisely segment the ridge information, as well as its value in obtaining data on the distribution of farmland and its potential for practical application.

2.
Sci Rep ; 12(1): 11549, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798807

ABSTRACT

Accurately obtaining the spatial distribution information of fruit tree planting is of great significance to the development of fruit tree growth monitoring, disease and pest control, and yield estimation. In this study, the Sentenel-2 multispectral remote sensing imageries of different months during the growth period of the fruit trees were used as the data source, and single month vegetation indices, accumulated monthly vegetation indices (∑VIs), and difference vegetation indices between adjacent months (∆VIs) were constructed as input variables. Four conventional vegetation indices of NDVI, PSRI, GNDVI, and RVI and four improved vegetation indices of NDVIre1, NDVIre2, NDVIre3, and NDVIre4 based on the red-edge band were selected to construct a decision tree classification model combined with machine learning technology. Through the analysis of vegetation indices under different treatments and different months, combined with the attribute of Feature_importances_, the vegetation indices of different periods with high contribution were selected as input features, and the Max_depth values of the decision tree model were determined by the hyperparameter learning curve. The results have shown that when the Max_depth value of the decision tree model of the vegetation indices under the three treatments was 6, 8, and 8, the model classification was the best. The accuracy of the three vegetation index processing models on the training set were 0.8936, 0.9153, and 0.8887, and the accuracy on the test set were 0.8355, 0.7611, and 0.7940, respectively. This method could be applied to remote sensing classification of fruit trees in a large area, and could provide effective technical means for monitoring fruit tree planting areas with medium and high resolution remote sensing imageries.


Subject(s)
Fruit , Remote Sensing Technology , Remote Sensing Technology/methods
3.
Front Plant Sci ; 13: 931789, 2022.
Article in English | MEDLINE | ID: mdl-35845632

ABSTRACT

Yield is an important indicator in evaluating rice planting, and it is the collective result of various factors over multiple growth stages. To achieve a large-scale accurate prediction of rice yield, based on yield estimation models using a single growth stage and conventional spectral transformation methods, this study introduced the continuous wavelet transform algorithm and constructed models under the premise of combined multiple growth stages. In this study, canopy reflectance spectra at four important stages of rice elongation, heading, flowering and milky were selected, and then, a rice yield estimation model was constructed by combining vegetation index, first derivative and wavelet transform based on random forest algorithm or multiple stepwise regression. This study found that the combination of multiple growth stages significantly improved the model accuracy. In addition, after two validations, the optimal model combination for rice yield estimation is first derivative-wavelet transform-vegetation index-random forest model based on four growth stages, with the coefficient of determination (R2) of 0.86, the root mean square error (RMSE) of 35.50 g·m-2 and the mean absolute percentage error (MAPE) of 4.6% for the training set, R2 of 0.85, RMSE of 33.40 g.m-2 and MAPE 4.30% for the validation set 1, and R2 of 0.80, RMSE of 37.40 g·m-2 and MAPE of 4.60% for the validation set 2. The research results demonstrated that the established model could accurately predict rice yield, providing technical support and a foundation for large-scale statistical estimating of rice yield.

4.
Sensors (Basel) ; 20(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147714

ABSTRACT

Sheath blight (ShB), caused by Rhizoctonia solani AG1-I, is one of the most important diseases in rice worldwide. The symptoms of ShB primarily develop on leaf sheaths and leaf blades. Hyperspectral remote sensing technology has the potential of rapid, efficient and accurate detection and monitoring of the occurrence and development of rice ShB and other crop diseases. This study evaluated the spectral responses of leaf blade fractions with different development stages of ShB symptoms to construct the spectral feature library of rice ShB based on "three-edge" parameters and narrow-band vegetation indices to identify the disease on the leaves. The spectral curves of leaf blade lesions have significant changes in the blue edge, green peak, yellow edge, red valley, red edge and near-infrared regions. The variables of the normalized index between green peak amplitude and red valley amplitude (Rg - Ro)/(Rg + Ro), the normalized index between the yellow edge area and blue edge area (SDy - SDb)/(SDy + SDb), the ratio index of green peak amplitude and red valley amplitude (Rg/Ro) and the nitrogen reflectance index (NRI) had high relevance to the disease. At the leaf scale, the importance weights of all attributes decreased with the effect of non-infected areas in a leaf by the ReliefF algorithm, with Rg/Ro being the indicator having the highest importance weight. Estimation rate of 95.5% was achieved in the decision tree classifier with the parameter of Rg/Ro. In addition, it was found that the variety degree of absorptive valley, reflection peak and reflecting steep slope was different in the blue edge, green and red edge regions, although there were similar spectral curve shapes between leaf sheath lesions and leaf blade lesions. The significant difference characteristic was the ratio index of the red edge area and green peak area (SDr/SDg) between them. These results can provide the basis for the development of a specific sensor or sensors system for detecting the ShB disease in rice.


Subject(s)
Oryza , Plant Diseases , Spectrum Analysis , Oryza/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Remote Sensing Technology , Rhizoctonia/pathogenicity
5.
Front Plant Sci ; 11: 259, 2020.
Article in English | MEDLINE | ID: mdl-32211011

ABSTRACT

Wheat spike number, which could be rapidly and accurately estimated by the image processing technology, serves as the basis for crop growth monitoring and yield prediction. In this research, simple linear iterative clustering (SLIC) was performed for superpixel segmentation of the digital images of field-grown wheat. Firstly, certain characteristic color parameters were extracted and analyzed from the digital images, and the classifiers with the highest accuracy were chosen for subsequent image classification. Next, the main body of wheat spike was extracted through a series of morphological transformation and estimate was performed for each region. Backbone of the head was extracted, and the number of inflection points of backbone was detected. Then the wheat spike number was determined by combining the estimate of inflection points of backbone and the estimate for each region. Finally, the wheat spike number estimate was verified under four nitrogen fertilizer levels. The results were as follows: (1) Super green value (Eg) and normalized red green index (Dgr) were used as classification features to recognize wheat spikes, soil and leaves; (2) compared with pixel-based image processing, wheat spike recognition effect was much better after superpixel segmentation, as the main body of wheat spike extracted was more clear and morphology more intact; and (3) wheat plants had better growth under high nitrogen fertilizer level, and the accuracy of wheat spike number estimation was also the highest, which was 94.01%. The growth status was the worst under no nitrogen fertilizer application, and the accuracy of wheat spikes number estimation was also the lowest, which was only 80.8%. After excluding the no nitrogen condition, the accuracy of wheat spikes number estimation among mixed samples with more uniform growth status was up to 93.8%, which was an increase by 10.1% than before the exclusion. Wheat spikes number estimate based on superpixel segmentation and color features was a rapid and accurate method that was applicable to the field environment. However, this method was not recommended for use when the growth status of wheat was poor or of high heterogeneity. The findings provided reference for field-grown wheat yield estimate.

6.
PLoS One ; 15(3): e0228500, 2020.
Article in English | MEDLINE | ID: mdl-32160185

ABSTRACT

Remote sensing has been used as an important means of modern crop production monitoring, especially for wheat quality prediction in the middle and late growth period. In order to further improve the accuracy of estimating grain protein content (GPC) through remote sensing, this study analyzed the quantitative relationship between 14 remote sensing variables obtained from images of environment and disaster monitoring and forecasting small satellite constellation system equipped with wide-band CCD sensors (abbreviated as HJ-CCD) and field-grown winter wheat GPC. The 14 remote sensing variables were normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), optimized soil-adjusted vegetation index (OSAVI), nitrogen reflectance index (NRI), green normalized difference vegetation index (GNDVI), structure intensive pigment index (SIPI), plant senescence reflectance index (PSRI), enhanced vegetation index (EVI), difference vegetation index (DVI), ratio vegetation index (RVI), Rblue (reflectance at blue band), Rgreen (reflectance at green band), Rred (reflectance at red band) and Rnir (reflectance at near infrared band). The partial least square (PLS) algorithm was used to construct and validate the multivariate remote sensing model of predicting wheat GPC. The research showed a close relationship between wheat GPC and 12 remote sensing variables other than Rblue and Rgreen of the spectral reflectance bands. Among them, except PSRI and Rblue, Rgreen and Rred, other remote sensing vegetation indexes had significant multiple correlations. The optimal principal components of PLS model used to predict wheat GPC were: NDVI, SIPI, PSRI and EVI. All these were sensitive variables to predict wheat GPC. Through modeling set and verification set evaluation, GPC prediction models' coefficients of determination (R2) were 0.84 and 0.8, respectively. The root mean square errors (RMSE) were 0.43% and 0.54%, respectively. It indicated that the PLS algorithm model predicted wheat GPC better than models for linear regression (LR) and principal components analysis (PCA) algorithms. The PLS algorithm model's prediction accuracies were above 90%. The improvement was by more than 20% than the model for LR algorithm and more than 15% higher than the model for PCA algorithm. The results could provide an effective way to improve the accuracy of remotely predicting winter wheat GPC through satellite images, and was conducive to large-area application and promotion.


Subject(s)
Algorithms , Grain Proteins/analysis , Remote Sensing Technology/methods , Satellite Imagery/methods , Triticum/chemistry , Triticum/metabolism , Least-Squares Analysis
7.
Sci Rep ; 10(1): 5173, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198471

ABSTRACT

Remote sensing has been used as an important means of estimating crop production, especially for the estimation of crop yield in the middle and late growth period. In order to further improve the accuracy of estimating winter wheat yield through remote sensing, this study analyzed the quantitative relationship between satellite remote sensing variables obtained from HJ-CCD images and the winter wheat yield, and used the partial least square (PLS) algorithm to construct and validate the multivariate remote sensing models of estimating the yield. The research showed a close relationship between yield and most remote sensing variables. Significant multiple correlations were also recorded between most remote sensing variables. The optimal principal components numbers of PLS models used to estimate yield were 4. Green normalized difference vegetation index (GNDVI), optimized soil-adjusted vegetation index (OSAVI), normalized difference vegetation index (NDVI) and plant senescence reflectance index (PSRI) were sensitive variables for yield remote sensing estimation. Through model development and model validation evaluation, the yield estimation model's coefficients of determination (R2) were 0.81 and 0.74 respectively. The root mean square error (RMSE) were 693.9 kg ha-1 and 786.5 kg ha-1. It showed that the PLS algorithm model estimates the yield better than the linear regression (LR) and principal components analysis (PCA) algorithms. The estimation accuracy was improved by more than 20% than the LR algorithm, and was 13% higher than the PCA algorithm. The results could provide an effective way to improve the estimation accuracy of winter wheat yield by remote sensing, and was conducive to large-area application and promotion.

8.
Sci Rep ; 10(1): 929, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969589

ABSTRACT

Normalized difference vegetation index (NDVI) is one of the most important vegetation indices in crop remote sensing. It features a simple, fast, and non-destructive method and has been widely used in remote monitoring of crop growing status. Beer-Lambert law is widely used in calculating crop leaf area index (LAI), however, it is time-consuming detection and low in output. Our objective was to improve the accuracy of monitoring LAI through remote sensing by integrating NDVI and Beer-Lambert law. In this study, the Beer-Lambert law was firstly modified to construct a monitoring model with NDVI as the independent variable. Secondly, experimental data of wheat from different years and various plant types (erectophile, planophile and middle types) was used to validate the modified model. The results showed that at 130 DAS (days after sowing), the differences in NDVI, leaf area index (LAI) and extinction coefficient (k) of the three plant types with significantly different leaf orientation values (LOVs) reached the maximum. The NDVI of the planophile-type wheat reached saturation earlier than that of the middle and erectophile types. The undetermined parameters of the model (LAI = -ln (a1 × NDVI + b1)/(a2 × NDVI + b2)) were related to the plant type of wheat. For the erectophile-type cultivars (LOV ≥ 60°), the parameters for the modified model were, a1 = 0.306, a2 = -0.534, b1 = -0.065, and b2 = 0.541. For the middle-type cultivars (30° < LOV < 60°), the parameters were, a1 = 0.392, a2 = -0.881, b1 = 0.028, and b2 = 0.845. And for the planophile-type cultivars (LOV ≤ 30°), those parameters were, a1 = 0.596, a2 = -1.306, b1 = 0.014, and b2 = 1.130. Verification proved that the modified model based on integrating NDVI and Beer-Lambert law was better than Beer-Lambert law model only or NDVI-LAI direct model only. It was feasible to quantitatively monitor the LAI of different plant-type wheat by integrating NDVI and Beer-Lambert law, especially for erectophile-type wheat (R2 = 0.905, RMSE = 0.36, RE = 0.10). The monitoring model proposed in this study can accurately reflect the dynamic changes of plant canopy structure parameters, and provides a novel method for determining plant LAI.


Subject(s)
Agriculture/methods , Crops, Agricultural/physiology , Plant Leaves/physiology , Triticum/classification , Triticum/physiology , Crops, Agricultural/metabolism , Plant Leaves/metabolism , Triticum/metabolism
9.
Front Plant Sci ; 10: 1047, 2019.
Article in English | MEDLINE | ID: mdl-31507626

ABSTRACT

Chlorophyll (Chl) is one of the most important classes of light-absorbing pigments in photosynthesis, and the proportion of Chl in leaves is closely related to vegetation nutrient status. Remote sensing-based estimation of Chl content holds great potential for evaluating crop growth status in agricultural management, precision farming and ecosystem monitoring. Recent studies have shown that steady-state fluorescence contributed up to 2% on the apparent reflectance in the 750-nm spectral region of plant and also provided additional evidence for fluorescence in-filling of the atmospheric oxygen absorption band at a central wavelength of 760 nm (O2-A band). In this study, an in situ hyperspectral remote sensing approach zwas employed to estimate corn Chl content at the canopy level by using chlorophyll fluorescence (ChlF) signals in the O2-A absorption band. Two new spectral indices, REArea760 (sum of first derivative reflectance between 755 and 763 nm) and REA760 (maximum of first derivative reflectance between 755 and 763 nm), derived from the first derivative spectra in the O2-A band, were proposed for estimating the corn canopy Chl content (CCC). They were compared with the performance of published indices measured at ground level, including the MERIS Terrestrial Chlorophyll Index (MTCI), Optimized Soil-Adjusted Vegetation Index 2 (OSAVI2), Modified Chlorophyll Absorption Ratio Index 2 (MCARI2), SR710, REArea (sum of first derivative reflectance between 680 and 780 nm), REA (maximum value of first derivative reflectance between 680 and 780 nm), and mND705. The results indicated that corn Chl content at the canopy level was better predicted by the new indices (with R2 = 0.835) than the published indices (with R2 ranging from 0.676 to 0.826). The two new indices ranked in the top four according to their summed ranks by integrating the ranks of RMSE and R2 of CCC linear regression models. ChlF originates only from chlorophyll in the photosynthetic apparatus and therefore is less sensitive to soil, wood, and dead biomass interference. Moreover, due to the fluorescence in-filling of the O2-A band and the amplified effect on spectrum signals by derivative operation, the spectral derivative indices in the O2-A band have great potential for estimating the CCC.

10.
Front Plant Sci ; 9: 776, 2018.
Article in English | MEDLINE | ID: mdl-29930568

ABSTRACT

Fraction of photosynthetically active radiation (FPAR), as an important index for evaluating yields and biomass production, is key to providing the guidance for crop management. However, the shortage of good hyperspectral data can frequently result in the hindrance of accurate and reliable FPAR assessment, especially for wheat. In the present research, aiming at developing a strategy for accurate FPAR assessment, the relationships between wheat canopy FPAR and vegetation indexes derived from concurrent ground-measured hyperspectral data were explored. FPAR revealed the most strongly correlation with normalized difference index (NDI), and scaled difference index (N*). Both NDI and N* revealed the increase as the increase of FPAR; however, NDI value presented the stagnation as FPAR value beyond 0.70. On the other hand, N* showed a decreasing tendency when FPAR value was higher than 0.70. This special relationship between FPAR and vegetation index could be employed to establish a piecewise FPAR assessment model with NDI as a regression variable during FPAR value lower than 0.70, or N* as the regression variable during FPAR value higher than 0.70. The model revealed higher assessment accuracy up to 16% when compared with FPAR assessment models based on a single vegetation index. In summary, it is feasible to apply NDI and N* for accomplishing wheat canopy FPAR assessment, and establish an FPAR assessment model to overcome the limitations from vegetation index saturation under the condition with high FPAR value.

11.
Front Plant Sci ; 9: 674, 2018.
Article in English | MEDLINE | ID: mdl-29881393

ABSTRACT

Hyperspectral remote sensing is a rapid non-destructive method for diagnosing nitrogen status in wheat crops. In this study, a quantitative correlation was associated with following parameters: leaf nitrogen accumulation (LNA), raw hyperspectral reflectance, first-order differential hyperspectra, and hyperspectral characteristics of wheat. In this study, integrated linear regression of LNA was obtained with raw hyperspectral reflectance (measurement wavelength = 790.4 nm). Furthermore, an exponential regression of LNA was obtained with first-order differential hyperspectra (measurement wavelength = 831.7 nm). Coefficients (R2) were 0.813 and 0.847; root mean squared errors (RMSE) were 2.02 g·m-2 and 1.72 g·m-2; and relative errors (RE) were 25.97% and 20.85%, respectively. Both the techniques were considered as optimal in the diagnoses of wheat LNA. Nevertheless, the better one was the new normalized variable (SDr - SDb)/(SDr + SDb), which was based on vegetation indices of R2 = 0.935, RMSE = 0.98, and RE = 11.25%. In addition, (SDr - SDb)/(SDr + SDb) was reliable in the application of a different cultivar or even wheat grown elsewhere. This indicated a superior fit and better performance for (SDr - SDb)/(SDr + SDb). For diagnosing LNA in wheat, the newly normalized variable (SDr - SDb)/(SDr + SDb) was more effective than the previously reported data of raw hyperspectral reflectance, first-order differential hyperspectra, and red-edge parameters.

12.
Sci Rep ; 8(1): 9525, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29934625

ABSTRACT

Chlorophyll fluorescence parameter of Fv/Fm, as an important index for evaluating crop yields and biomass, is key to guide crop management. However, the shortage of good hyperspectral data can hinder the accurate assessment of wheat Fv/Fm. In this research, the relationships between wheat canopy Fv/Fm and in-situ hyperspectral vegetation indexes were explored to develop a strategy for accurate Fv/Fm assessment. Fv/Fm had the highest coefficients with normalized pigments chlorophyll ratio index (NPCI) and the medium terrestrial chlorophyll index (MTCI). Both NPCI and MTCI were increased with the increase in Fv/Fm. However, NPCI value ceased to increase as Fv/Fm reached 0.61. MTCI had a descending trend when Fv/Fm value was higher than 0.61. A piecewise Fv/Fm assessment model with NPCI and MTCI regression variables was established when Fv/Fm value was ≤0.61 and >0.61, respectively. The model increased the accuracy of assessment by up to 16% as compared with the Fv/Fm assessment model based on a single vegetation index. Our study indicated that it was feasible to apply NPCI and MTCI to assess wheat Fv/Fm and to establish a piecewise Fv/Fm assessment model that can overcome the limitations from vegetation index saturation under high Fv/Fm value.


Subject(s)
Absorption, Physicochemical , Chlorophyll/chemistry , Triticum/chemistry , Spectrometry, Fluorescence
13.
Sci Rep ; 5: 9311, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831131

ABSTRACT

A field experiment was conducted using three corn cultivars (Jingyu7, Nongda80, and Tangyu10) and three nitrogen (N) application rates (0, 75, and 150 kg N ha(-1)). The objectives of this study were to investigate the responses of photosynthetic CO2 assimilation (Ph), the maximum quantum yield of photosystem II (Fv/Fm), leaf dry weight (LDW), leaf nitrogen concentration (LNC), leaf sugar concentration (LSC), and the sugar-to-nitrogen concentration ratio (S/N) to N levels in three different field-grown corn cultivars on three sampling dates. The results showed that the LDW, Fv/Fm, Ph, LNC, and LSC increased with increasing N levels, and the variation patterns of Fv/Fm, Ph, and LNC were "low-high-low". In contrast, S/N decreased with increasing N levels, and its variation pattern was "high-low-high". The values of LDW, Fv/Fm, Ph, LNC, LSC, and S/N were greatest under high N conditions, followed by medium N conditions, and finally low N conditions. Significant interactions occurred between Ph, Fv/Fm, LNC, LSC, LDW, and S/N, with the exception of the interaction between LSC and S/N and between LSC and LDW. The correlation coefficients between Ph and S/N and between Fv/Fm and S/N were -0.714 and -0.798, respectively.


Subject(s)
Carbohydrate Metabolism , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Nitrogen/metabolism , Photosynthesis , Stress, Physiological , Zea mays/physiology , Plant Leaves/metabolism , Seasons
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(5): 1287-91, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22827074

ABSTRACT

In order to further assess the feasibility of monitoring the chlorophyll fluorescence parameter Fv/Fm in compact corn by hyperspectral remote sensing data, in the present study, hyperspectral vegetation indices from in-situ remote sensing measurements were utilized to monitor the chlorophyll fluorescence parameter Fv/Fm measured in the compact corn experiment. The relationships were analyzed between hyperspectral vegetation indices and Fv/Fm, and the monitoring models were established for Fv/Fm in the whole growth stages of compact corn. The results indicated that Fv/Fm was significantly correlated to the hyperspectral vegetation indices. Among them, structure-sensitive pigment index (SIPI) was the most sensitive remote sensing variable for monitoring Fv/Fm with correlation coefficient (r) of 0.88. The monitoring model of Fv/Fm was established on the base of SIPI, and the determination coefficients (r2) and the root mean square errors (RMSE) were 0.8126 and 0.082 respectively. The overall results suggest that hyperspectral vegetation indices can be potential indicators to monitor Fv/Fm during growth stages of compact corn.


Subject(s)
Chlorophyll/analysis , Fluorescence , Zea mays , Environmental Monitoring , Models, Theoretical , Spectrometry, Fluorescence
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(11): 3103-6, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23387188

ABSTRACT

The objective of the present study was to compare two methods for the precision of estimating leaf water content (LWC) in winter wheat by combining stepwise regression method and partial least squares (SRM-PLS) or PLS based on the relational degree of grey relational analysis (GRA) between water vegetation indexes (WVIs) and LWC. Firstly, data utilized to analyze the grey relationships between LWC and the selected typical WVIs were used to determine the sensitivity of different WVIs to LWC. Secondly, the two methods of estimating LWC in winter wheat were compared, one was to directly use PLS and the other was to combine SRM and PLS, and then the method with the highest determination coefficient (R2) and lowest root mean square error (RMSE) was selected to estimate LWC in winter wheat. The results showed that the relationships between the first five WVI and LWC were stable by using GRA, and then LWC was estimated by using PLS and SRM-PLS at the whole stages with the R2 and RMSEs being 0.605 and 0.575, 4.75% and 7.35%, respectively. The results indicated that the estimation accuracy of LWC could be improved by using GRA firstly and then by using PLS and SRM-PLS.


Subject(s)
Plant Leaves/chemistry , Spectrum Analysis/methods , Triticum/chemistry , Water/analysis , Least-Squares Analysis , Regression Analysis , Seasons
16.
Ying Yong Sheng Tai Xue Bao ; 19(6): 1261-8, 2008 Jun.
Article in Chinese | MEDLINE | ID: mdl-18808018

ABSTRACT

The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem < sheath < spike < leaf. The spectral reflectance at visible light bands was leaf < spike < sheath < stem, but that at near-infrared bands was in adverse. The linear and exponential models with the raw hyperspectral reflectance at 796.7 nm and the first derivative hyperspectral reflectance at 738.4 nm as independent variables could better diagnose rice plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.


Subject(s)
Nitrogen/analysis , Oryza/chemistry , Spectrum Analysis/methods , Algorithms , Models, Theoretical , Plant Leaves/chemistry , Plant Stems/chemistry
17.
Ying Yong Sheng Tai Xue Bao ; 19(10): 2201-8, 2008 Oct.
Article in Chinese | MEDLINE | ID: mdl-19123356

ABSTRACT

Chinese-Brazil Earth Resources Satellite No. 2 (CBERS-02) has good spatial resolution and abundant spectral information, and a strong ability in detecting vegetation. Based on five CBERS-02 images in winter wheat growth season, the spectral distance between winter wheat and other ground targets was calculated, and then, winter wheat was classified from each individual image or their combinations by using supervised classification. The train and validation samples were derived from high resolution Aerial Images and SPOT5 images. The accuracies and analyses were evaluated for CBERS-02 images at early growth stages, and the results were compared to those of TM images acquired in the same phenological calendars. The results showed that temporal information was the main factor affecting the classification accuracy in winter wheat, but the characteristics of different sensors could affect the classification accuracy. The multi-temporal images could improve the classification accuracy, compared with the results derived from signal stage, with the producer accuracy of optimum periods combination improved 20.0% and user accuracy improved 7.83%. Compared with TM sensor, the classification accuracy from CBERS-02 was a little lower.


Subject(s)
Geographic Information Systems , Satellite Communications , Triticum/classification , Triticum/growth & development , China , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...