Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 9(1): 419, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980349

ABSTRACT

Cellular senescence is a hallmark of aging and has been linked to age-related diseases. Age-related macular degeneration (AMD), the most common aging-related retinal disease, is prospectively associated with retinal pigment epithelial (RPE) senescence. However, the mechanism of RPE cell senescence remains unknown. In this study, tert-butyl hydroperoxide (TBH)-induced ARPE-19 cells and D-galactose-treated C57 mice were used to examine the cause of elevated iron in RPE cell senescence. Ferric ammonium citrate (FAC)-treated ARPE-19 cells and C57 mice were used to elucidated the mechanism of iron overload-induced RPE cell senescence. Molecular biology techniques for the assessment of iron metabolism, cellular senescence, autophagy, and mitochondrial function in vivo and in vitro. We found that iron level was increased during the senescence process. Ferritin, a major iron storage protein, is negatively correlated with intracellular iron levels and cell senescence. NCOA4, a cargo receptor for ferritinophagy, mediates degradation of ferritin and contributes to iron accumulation. Besides, we found that iron overload leads to mitochondrial dysfunction. As a result, mitochondrial DNA (mtDNA) is released from damaged mitochondria to cytoplasm. Cytoplasm mtDNA activates the cGAS-STING pathway and promotes inflammatory senescence-associated secretory phenotype (SASP) and cell senescence. Meanwhile, iron chelator Deferoxamine (DFO) significantly rescues RPE senescence and retinopathy induced by FAC or D-gal in mice. Taken together, these findings imply that iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Inhibiting iron accumulation may represent a promising therapeutic approach for age-related diseases such as AMD.

2.
Cell Death Dis ; 14(9): 583, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658045

ABSTRACT

Diabetic retinopathy (DR) is a serious and relatively under-recognized complication of diabetes. Müller glial cells extend throughout the retina and play vital roles in maintaining retinal homeostasis. Previous studies have demonstrated that TGR5, a member of the bile acid-activated GPCR family, could ameliorate DR. However, the role of TGR5 in regulating Müller cell function and the underlying mechanism remains to be ascertained. To address this, high glucose (HG)-treated human Müller cells and streptozotocin-treated Sprague-Dawley rats were used in the study. The IP3R1-GRP75-VDAC1 axis and mitochondrial function were assessed after TGR5 ablation or agonism. Cytosolic mitochondrial DNA (mtDNA)-mediated cGAS-STING activation was performed. The key markers of retinal vascular leakage, apoptosis, and inflammation were examined. We found that mitochondrial Ca2+ overload and mitochondrial dysfunction were alleviated by TGR5 agonist. Mechanically, TGR5 blocked the IP3R1-GRP75-VDAC1 axis mediated Ca2+ efflux from the endoplasmic reticulum into mitochondria under diabetic condition. Mitochondrial Ca2+ overload led to the opening of the mitochondrial permeability transition pore and the release of mitochondrial DNA (mtDNA) into the cytosol. Cytoplasmic mtDNA bound to cGAS and upregulated 2'3' cyclic GMP-AMP. Consequently, STING-mediated inflammatory responses were activated. TGR5 agonist prevented retinal injury, whereas knockdown of TGR5 exacerbated retinal damage in DR rats, which was rescued by the STING inhibitor. Based on the above results, we propose that TGR5 might be a novel therapeutic target for the treatment of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Retinal Diseases , Humans , Animals , Rats , Rats, Sprague-Dawley , Mitochondria , DNA, Mitochondrial/genetics , Endoplasmic Reticulum
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166839, 2023 12.
Article in English | MEDLINE | ID: mdl-37549719

ABSTRACT

Diabetic retinopathy (DR) is a common complication in patients with diabetes and has become an important cause of blindness in working-age people. However, the mechanisms involved have not been fully elucidated. Circular RNAs (circRNAs) can play an important role in DR, and they can accurately regulate the expression of target genes through a new regulatory model: the competing endogenous RNA (ceRNA) model. We isolated total RNA from extracellular vesicles in the serum of healthy individuals (Con) and individuals with diabetes mellitus without DR (DM), nonproliferative DR (NPDR), or proliferative DR (PDR) and subjected them to deep sequencing. We found aberrantly high expression of circMKLN1. In a streptozotocin (STZ)-induced mice model of diabetes, the inhibition of circMKLN1 with AAV2 transduction markedly ameliorated retinal acellular vessels and vascular leakage, which was reversed by intravitreal injection of rapamycin, a potent autophagy inducer. In addition, circMKLN1 adsorbs miR-26a-5p as a molecular sponge and mediates high glucose (HG)/methylglyoxal (MG)-induced autophagy in hRMECs. CircMKLN1-silencing treatment reduces HG/MG-related reactive autophagy and inflammation. In addition, miR-26a-5p targeting by circMKLN1 plays an important role in the regulation of Rab11a expression. Thus, either new biomarkers or new therapeutic targets may be identified with the translation of these findings.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , RNA, Circular , Animals , Mice , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Disease Models, Animal , Inflammation , MicroRNAs/genetics , RNA, Circular/genetics , Humans
4.
J Cell Physiol ; 234(10): 17269-17279, 2019 08.
Article in English | MEDLINE | ID: mdl-30784065

ABSTRACT

Long noncoding RNAs have been reported to play important roles in the pathogenesis of diabetic retinopathy (DR), which has been considered as the most common disease leading to vision loss. However, it is still unclear whether KCNQ1 overlapping transcript 1 (KCNQ1OT1) could affect DR. In this study, regarding quantitative reverse transcription polymerase chain reaction assay, KCNQ1OT1 level was upregulated while microRNA-1470 (miR-1470) was decreased in DR patients and human retinal endothelial cells. High KCNQ1OT1 expression was correlated with DR stage and low visual function. Using miR-1470 mimic or knockdown of KCNQ1OT1 could lead to the similar phenomenon; phospho-AKT, Bax, B-cell lymphoma 2, and cleaved poly-ADP ribose polymerase (PARP) were regulated, while vascularization was inhibited and apoptosis was promoted. Regarding bioinformatics analysis and in vitro dual luciferase reporter assay, there should be a negative correlation between KCNQ1OT1 and miR-1470. Additionally, mRNA of epidermal growth factor receptor (EGFR) was proved as the target of miR-1470 and EGFR targeting by miR-1470 initiated KCNQ1OT1 deficiency-induced apoptosis and promoted proliferation. KCNQ1OT1 and miR-1470 were proved to be the promoter and repressor of EGFR, respectively. The results suggested that KCNQ1OT1 could sponge miR-1470 and further regulate EGFR in DR.


Subject(s)
Diabetic Retinopathy/metabolism , Cell Proliferation/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Potassium Channels, Voltage-Gated/genetics , RNA, Long Noncoding/genetics , Retina/metabolism , Up-Regulation
5.
Diabetologia ; 62(2): 335-348, 2019 02.
Article in English | MEDLINE | ID: mdl-30411254

ABSTRACT

AIMS/HYPOTHESIS: Diabetic retinopathy is a common microvascular complication of diabetes mellitus and is initiated by inflammation and apoptosis-associated retinal endothelial cell damage. Prostaglandin E2 (PGE2) has emerged as a critical regulator of these biological processes. We hypothesised that modulating PGE2 and its E-prostanoid receptor (EP2R) would prevent diabetes mellitus-induced inflammation and microvascular dysfunction. METHODS: In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal vascular and biochemical markers were assessed. RESULTS: Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition, pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein signalling pathway. CONCLUSIONS/INTERPRETATION: The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Dinoprostone/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/physiology , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Animals , Dinoprostone/pharmacology , Humans , Inflammasomes/metabolism , Male , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vitreous Body/metabolism , Xanthones/pharmacology
6.
Acta Biochim Biophys Sin (Shanghai) ; 50(9): 914-920, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30060118

ABSTRACT

Carboplatin is the most commonly used drug in the first-line treatment of human retinoblastoma (RB), but its clinical application is greatly limited due to acquired drug resistance upon the long-term treatment. Forkhead box protein M1 (FoxM1) is the transcription factor aberrantly expressed in various types of human cancers, which plays an essential role in the regulation of tumorigenesis, tumor metastasis and drug resistance. However, little is known about the role of FoxM1 in chemo-resistance of human RB. In this study, we investigated the regulatory effect of FoxM1 on carboplatin resistance in human RB Y-79 cells and carboplatin-resistant Y-79 (Y-79CR) cells, as well as the possible mechanism. Our results showed that FoxM1 was up-regulated in Y-79CR cells and silencing of FoxM1 promoted carboplatin sensitivity and accumulation, while overexpression of FoxM1 in Y-79 cells performed oppositely. Our study further revealed that FoxM1 enhanced carboplatin resistance in Y-79CR cells through directly up-regulating the transcription of ATP-binding cassette transporter C4 (ABCC4), an important drug efflux transporter. Overall, our study demonstrated the novel role of FoxM1-ABCC4 axis in human RB, which provides insights into the prevention of carboplatin resistance in human RB.


Subject(s)
Carboplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Forkhead Box Protein M1/genetics , Multidrug Resistance-Associated Proteins/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Multidrug Resistance-Associated Proteins/metabolism , RNA Interference , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , Up-Regulation
7.
Exp Cell Res ; 357(2): 335-340, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28583762

ABSTRACT

Amyloid ß (Aß) is a critical stimulator that promotes the progression of age-related macular degeneration (AMD). NLRP3 inflammasome activation induced by Aß is estimated to be responsible for retinal pigment epithelium (RPE) dysfunction in such disease. Puerarin, one of the major active constituents of Kudzu root, has been widely used in the clinical treatment of AMD in China for decades; however, the detailed molecular mechanism remains far from clear. In this study, we investigated the protective effect and underlying mechanism of puerarin against Aß1-40-induced NLRP3 inflammasome activation in LPS-primed ARPE-19 cells. The results showed that Aß1-40 induced NLRP3 inflammasome activation mainly via triggering ROS-dependent oxidative stress, particularly lipid peroxidation, and endoplasmic reticulum stress in LPS-primed ARPE-19 cells; however, such effect could be significantly reversed by puerarin in a dose-dependent manner. Furthermore, the effect of puerarin was potentially mediated through activating Nrf2/HO-1 antioxidant signaling pathway and inhibiting Aß1-40-induced phosphorylation of IRE1 and PERK as well as nuclear expression of ATF6α. Therefore, the significance of the current study is to reveal the novel mechanism of puerarin in the prevention of AMD.


Subject(s)
Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/drug effects , Inflammasomes/drug effects , Isoflavones/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Retinal Pigment Epithelium/drug effects , Amyloid beta-Peptides/pharmacology , Carrier Proteins/metabolism , Epithelial Cells/metabolism , Humans , Inflammasomes/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...