Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMC Pediatr ; 23(1): 122, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36932325

ABSTRACT

BACKGROUND: Liveborn infants with non-mosaic trisomy 22 are rarely described in the medical literature. Reported lifespan of these patients ranges from minutes to 3 years, with the absence of cardiac anomalies associated with longer-term survival. The landscape for offering cardiac surgery to patients with rare autosomal trisomies is currently evolving, as has been demonstrated recently in trisomies 13 and 18. However, limited available data on patients with rare autosomal trisomies provides a significant challenge in perinatal counseling, especially when there are options for surgical intervention. CASE PRESENTATION: In this case report, we describe an infant born at term with prenatally diagnosed apparently non-mosaic trisomy 22 and multiple cardiac anomalies, including a double outlet right ventricle, hypoplastic aortic valve and severe aortic arch hypoplasia, who underwent cardiac surgery. The decisions made by her family lending to her progress and survival to this day were made with a focus on the shared decision making model and support in the prenatal and perinatal period. We also review the published data on survival and quality of life after cardiac surgery in infants with rare trisomies. CONCLUSIONS: This patient is the only known case of apparently non-mosaic trisomy 22 in the literature who has undergone cardiac surgery with significant survival benefit. This case highlights the impact of using a shared decision making model when there is prognostic uncertainty.


Subject(s)
Abnormalities, Multiple , Heart Defects, Congenital , Infant , Pregnancy , Female , Humans , Trisomy , Quality of Life , Decision Making, Shared , Heart Defects, Congenital/genetics , Heart Defects, Congenital/surgery , Abnormalities, Multiple/genetics
2.
Front Neurol ; 12: 663911, 2021.
Article in English | MEDLINE | ID: mdl-34025568

ABSTRACT

Background: Spinal muscular atrophy (SMA) linked to chromosome 5q is an inherited progressive neuromuscular disorder with a narrow therapeutic window for optimal treatment. Although genetic testing provides a definitive molecular diagnosis that can facilitate access to effective treatments, limited awareness and other barriers may prohibit widespread testing. In this study, the clinical and molecular findings of SMA Identified-a no-charge sponsored next-generation sequencing (NGS)-based genetic testing program for SMA diagnosis-are reported. Methods: Between March 2018 and March 2020, unrelated individuals who had a confirmed or suspected SMA diagnosis or had a family history of SMA were eligible. All individuals underwent diagnostic genetic testing for SMA at clinician discretion. In total, 2,459 individuals were tested and included in this analysis. An NGS-based approach interrogated sequence and copy number of SMN1 and SMN2. Variants were confirmed by multiplex ligation-dependent probe amplification sequencing. Individuals were categorized according to genetic test results: diagnostic (two pathogenic SMN1 variants), nearly diagnostic (SMN1 exon-7 deletion with a variant of uncertain significance [VUS] in SMN1 or SMN2), indeterminate VUS (one VUS in SMN1 or SMN2), carrier (heterozygous SMN1 deletion only), or negative (no pathogenic variants or VUS in SMN1 or SMN2). Diagnostic yield was calculated. Genetic test results were analyzed based on clinician-reported clinical features and genetic modifiers (SMN2 copy number and SMN2 c.859G>C). Results: In total, 2,459 unrelated individuals (mean age 24.3 ± 23.0 years) underwent diagnostic testing. The diagnostic yield for diagnostic plus nearly diagnostic results was 31.3% (n = 771/2,459). Age of onset and clinical presentation varied considerably for individuals and was dependent on SMN2 copy number. Homozygous deletions represented the most common genetic etiology (96.2%), with sequence variants also observed in probands with clinical diagnoses of SMA. Conclusions: Using a high-yield panel test in a no-charge sponsored program early in the diagnostic odyssey may open the door for medical interventions in a substantial number of individuals with SMA. These findings have potential implications for clinical management of probands and their families.

3.
Mol Genet Genomic Med ; 8(10): e1460, 2020 10.
Article in English | MEDLINE | ID: mdl-32815318

ABSTRACT

BACKGROUND: Variants in TTN are frequently identified in the genetic evaluation of skeletal myopathy or cardiomyopathy. However, due to the high frequency of TTN variants in the general population, incomplete penetrance, and limited understanding of the spectrum of disease, interpretation of TTN variants is often difficult for laboratories and clinicians. Currently, cardiomyopathy is associated with heterozygous A-band TTN variants, whereas skeletal myopathy is largely associated with homozygous or compound heterozygous TTN variants. Recent reports show pathogenic variants in TTN may result in a broader phenotypic spectrum than previously recognized. METHODS: Here we report the results of a multisite study that characterized the phenotypes of probands with variants in TTN. We investigated TTN genotype-phenotype correlations in probands with skeletal myopathy and/or cardiomyopathy. Probands with TTN truncating variants (TTNtv) or pathogenic missense variants were ascertained from two academic medical centers. Variants were identified via clinical genetic testing and reviewed according to the American College of Medical Genetics criteria. Clinical and family history data were documented via retrospective chart review. Family studies were performed for probands with atypical phenotypes. RESULTS: Forty-nine probands were identified with TTNtv or pathogenic missense variants. Probands were classified by clinical presentation: cardiac (n = 30), skeletal muscle (n = 12), or both (cardioskeletal, n = 7). Within the cardioskeletal group, 5/7 probands had heterozygous TTNtv predicted to affect the distal (3') end of the A-band. All cardioskeletal probands had onset of proximal-predominant muscle weakness before diagnosis of cardiovascular disease, five pedigrees support dominant transmission. CONCLUSION: Although heterozygous TTNtv in the A-band is known to cause dilated cardiomyopathy, we present evidence that these variants may in some cases cause a novel, dominant skeletal myopathy with a limb-girdle pattern of weakness. These findings emphasize the importance of multidisciplinary care for patients with A-band TTNtv who may be at risk for multisystem disease.


Subject(s)
Cardiomyopathies/genetics , Connectin/genetics , Muscular Dystrophies/genetics , Phenotype , Adolescent , Adult , Aged , Cardiomyopathies/pathology , Female , Heterozygote , Humans , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Dystrophies/pathology , Mutation , Myocardium/pathology
4.
Genet Test Mol Biomarkers ; 24(10): 616-624, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32721234

ABSTRACT

Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.


Subject(s)
Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Gene Dosage/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Male , Middle Aged , Multiplex Polymerase Chain Reaction/methods , Muscular Atrophy, Spinal/diagnosis , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Neuromuscular Diseases/physiopathology , Real-Time Polymerase Chain Reaction/methods , Survival of Motor Neuron 2 Protein/genetics
5.
Neurol Genet ; 6(2): e412, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32337338

ABSTRACT

OBJECTIVE: Molecular genetic testing for hereditary neuromuscular disorders is increasingly used to identify disease subtypes, determine prevalence, and inform management and prognosis, and although many small disease-specific studies have demonstrated the utility of genetic testing, comprehensive data sets are better positioned to assess the complexity of genetic analysis. METHODS: Using high depth-of-coverage next-generation sequencing (NGS) with simultaneous detection of sequence variants and copy number variants (CNVs), we tested 25,356 unrelated individuals for subsets of 266 genes. RESULTS: A definitive molecular diagnosis was obtained in 20% of this cohort, with yields ranging from 4% among individuals with congenital myasthenic syndrome to 33% among those with a muscular dystrophy. CNVs accounted for as much as 39% of all clinically significant variants, with 10% of them occurring as rare, private pathogenic variants. Multigene testing successfully addressed differential diagnoses in at least 6% of individuals with positive results. Even for classic disorders like Duchenne muscular dystrophy, at least 49% of clinically significant results were identified through gene panels intended for differential diagnoses rather than through single-gene analysis. Variants of uncertain significance (VUS) were observed in 53% of individuals. Only 0.7% of these variants were later reclassified as clinically significant, most commonly in RYR1, GDAP1, SPAST, and MFN2, providing insight into the types of evidence that support VUS resolution and informing expectations of reclassification rates. CONCLUSIONS: These data provide guidance for clinicians using genetic testing to diagnose neuromuscular disorders and represent one of the largest studies demonstrating the utility of NGS-based testing for these disorders.

6.
Mol Genet Genomic Med ; 7(11): e924, 2019 11.
Article in English | MEDLINE | ID: mdl-31489791

ABSTRACT

BACKGROUND: Pathogenic variants in TTN (OMIM 188840), encoding the largest human protein, are known to cause dilated cardiomyopathy and several forms of skeletal myopathy. The clinical interpretation of TTN variants is challenging, however, due to the frequency of missense changes, variable testing and reporting practices in commercial laboratories, and incomplete understanding of the spectrum of TTN-related disease. METHODS: We report a heterozygous TTN deletion segregating in a family with an unusual skeletal myopathy phenotype associated with facial weakness, gait abnormality, and dilated cardiomyopathy. RESULTS: A novel 16.430 kb heterozygous deletion spanning part of the A- and M-bands of TTN was identified in the proband and his symptomatic son, as well as in an additional son whose symptoms were identified on clinical evaluation. The deletion was found to be de novo in the proband. CONCLUSION: Pathogenic variants in TTN may be an unrecognized cause of skeletal myopathy phenotypes, particularly when accompanied by dilated cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated/etiology , Connectin/genetics , Face/physiopathology , Facial Paralysis/etiology , Gene Deletion , Muscle, Skeletal/physiopathology , Muscular Diseases/etiology , Adolescent , Adult , Cardiomyopathy, Dilated/pathology , Facial Paralysis/pathology , Female , Humans , Male , Middle Aged , Muscular Diseases/pathology , Pedigree , Prognosis
7.
Front Genet ; 7: 36, 2016.
Article in English | MEDLINE | ID: mdl-27014339

ABSTRACT

The utilization of next-generation sequencing technology to interrogate multiple genes simultaneously is being utilized more frequently in hereditary cancer testing. While this has benefits of reducing cost and allowing clinicians to cast a wide net in the elucidation of their patient's cancer, panel testing has the potential to reveal unexpected information. We report on a proband with pathogenic variants resulting in two different hereditary colon cancer syndromes. A 39-year-old male with a history of colon cancer, more than 20 colon polyps and a family history of colon cancer presented for genetic counseling. Testing with a 7-gene high-risk hereditary colon cancer panel identified a homozygous pathogenic variant, c.1187G>A (p.Gly396Asp) in MUTYH, and a likely pathogenic duplication of exon 7 in MSH2. Since this test result, the proband's mother was diagnosed with colon cancer; subsequent genetic testing confirmed she also carries the likely pathogenic duplication in the MSH2 gene. Although the cancer risk in individuals who carry multiple pathogenic variants has not been established for combined biallelic MUTYH-associated polyposis and Lynch syndrome, the identification of multiple pathogenic variants does allow for screening for cancers associated with both syndromes and has implications for cancer risk for family members. In particular, this has significant impact on those who test negative for a known familial pathogenic variant, yet could be still be at risk for cancer due to a second pathogenic variant in a family. More information is needed on the frequency of occurrence of multiple pathogenic variants, as well as the phenotypic spectrum when multiple pathogenic variants are present.

8.
Am J Med Genet A ; 170(6): 1580-4, 2016 06.
Article in English | MEDLINE | ID: mdl-26955893

ABSTRACT

Pathogenic variants in the mitofusin 2 gene (MFN2) are the most common cause of autosomal dominant Charcot-Marie-Tooth (CMT2) disease, which is typically characterized by axonal sensorimotor neuropathy. We report on a 7-month-old white female with hypotonia, motor delay, distal weakness, and motor/sensory axonal neuropathy in which next-generation sequencing analysis identified compound heterozygous pathogenic variants (c.2054_2069_1170del and c.392A>G) in MFN2. A review of the literature reveals that sporadic and familial cases of compound heterozygous or homozygous pathogenic MFN2 variants have been infrequently described, which indicates that MFN2 can also be inherited in a recessive manner. This case highlights several clinical findings not typically associated with MFN2 pathogenic variants, including young age of onset and rapidly progressing diaphragmatic paresis that necessitated tracheostomy and mechanical ventilation, and adds to the growing list of features identified in autosomal recessive MFN2-related CMT2. Our patient with MFN2-related CMT2 expands the clinical and mutational spectrum of individuals with autosomal recessive CMT2 and identifies a new clinical feature that warrants further observation. © 2016 Wiley Periodicals, Inc.


Subject(s)
Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Diaphragm/physiopathology , GTP Phosphohydrolases/genetics , Genes, Recessive , Mitochondrial Proteins/genetics , Muscle Weakness/genetics , Mutation , Alleles , Female , Genetic Association Studies , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Pedigree , Phenotype
9.
Hum Mutat ; 36(4): 454-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25655089

ABSTRACT

Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes.


Subject(s)
Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Heterozygote , Mutation , Phenotype , Alleles , Cohort Studies , DNA Mutational Analysis , Exome , Facies , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male
10.
Mol Genet Genomic Med ; 2(2): 115-23, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689074

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.

11.
Brain Dev ; 36(4): 351-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23726037

ABSTRACT

Primary autosomal recessive microcephaly (MCPH) is a genetically heterogeneous condition characterized by congenital microcephaly and intellectual disability. To date, 10 MCPH loci have been identified and due to the genetic heterogeneity of this condition, molecular testing for MCPH can be complicated. Our methods involved employing a next generation sequencing panel of MCPH-related genes allowing for the evaluation of multiple disease loci simultaneously. Next generation sequencing analysis of a 6 year old female with primary microcephaly identified novel compound heterozygous mutations (c.524_528del and c.4005-1G>A) in the CDK5RAP2 gene. A review of the published literature to date reveals that only three mutations have been previously reported in the CDK5RAP2 gene in the homozygous state in three Northern Pakistani and one Somali consanguineous MCPH families. Our patient represents the first non-consanguineous Caucasian individual to have been identified with CDK5RAP2-related MCPH. As only a handful of patients have been reported in the literature with CDK5RAP2-related MCPH, we anticipate the identification of individuals with CDK5RAP2 mutations from all ethnic backgrounds will continue. Our patient contributes to the ethnic and genotypic spectrum of CDK5RAP2-related MCPH and supports the occurrence of this genetic condition beyond that of consanguineous families of certain ethnic populations. Our results also highlight the utility of multi-gene sequencing panels to elucidate the etiology of genetically heterogeneous conditions.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Cell Cycle Proteins , Child , Female , High-Throughput Nucleotide Sequencing , Humans , Pedigree , White People/genetics
12.
Dev Disabil Res Rev ; 17(1): 9-14, 2011.
Article in English | MEDLINE | ID: mdl-22447749

ABSTRACT

Newborn screening (NBS), since its implementation in the 1960s, has traditionally been successful in reducing mortality and disability in children with a range of different conditions. Lysosomal storage disorders (LSD) are a heterogeneous group of inherited metabolic diseases that result from lysosomal dysfunction. Based on available treatment and suitable screening methods, the LSDs that are considered for NBS generally include Fabry, Gaucher, Krabbe, MPSI, MPSII, MPSV, Metachromatic leukodystrophy, Niemann-Pick, and Pompe. Utilizing traditional and expanded criteria for consideration of NBS leads to a set of fundamental questions that need to be explored when considering the opportunities and challenges of adding LSDs to NBS panels.


Subject(s)
Lysosomal Storage Diseases/diagnosis , Neonatal Screening/organization & administration , Humans , Infant, Newborn , Lysosomal Storage Diseases/therapy
13.
Catheter Cardiovasc Interv ; 66(3): 427-31, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16208699

ABSTRACT

Amplatzer ductal occluders were used for percutaneous closure of perimembranous ventricular septal defects with associated ventricular septal aneurysm in three patients. The device was well positioned and the ventricular left-to-right shunt was significantly decreased in all three patients. The procedure was tolerated well without complications in each case.


Subject(s)
Cardiac Surgical Procedures/methods , Heart Aneurysm/surgery , Heart Septal Defects, Ventricular/surgery , Heart Septum , Prosthesis Implantation/instrumentation , Adult , Child, Preschool , Echocardiography, Transesophageal , Female , Follow-Up Studies , Heart Aneurysm/complications , Heart Aneurysm/diagnostic imaging , Heart Septal Defects, Ventricular/complications , Heart Septal Defects, Ventricular/diagnostic imaging , Humans , Male , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...