Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577942

ABSTRACT

Throat sensing has received increasing demands in recent years, especially for oropharyngeal treatment applications. The conventional videofluoroscopy (VFS) approach is limited by either exposing the patient to radiation or incurring expensive costs on sophisticated equipment as well as well-trained speech-language pathologists. Here, we propose a smart and non-invasive throat sensor that can be fabricated using an ionic polymer-metal composite (IPMC) material. Through the cation's movement inside the IPMC material, the sensor can detect muscle movement at the throat using a self-generated signal. We have further improved the output responses of the sensor by coating it with a corrosive-resistant gold material. A support vector machine algorithm is used to train the sensor in recognizing the pattern of the throat movements, with a high accuracy of 95%. Our proposed throat sensor has revealed its potential to be used as a promising solution for smart healthcare devices, which can benefit many practical applications such as human-machine interactions, sports training, and rehabilitation.

2.
Sci Rep ; 6: 32645, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27587295

ABSTRACT

Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface -OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device.

SELECTION OF CITATIONS
SEARCH DETAIL
...