Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1211768, 2023.
Article in English | MEDLINE | ID: mdl-37736095

ABSTRACT

Introduction: Continuous nitrogen deposition increases the nitrogen content of terrestrial ecosystem and affects the geochemical cycle of soil nitrogen. Forest-grassland ecotone is the interface area of forest and grassland and is sensitive to global climate change. However, the structure composition and diversity of soil microbial communities and their relationship with soil environmental factors at increasing nitrogen deposition have not been sufficiently studied in forest-grassland ecotone. Methods: In this study, experiments were carried out with four nitrogen addition treatments (0 kgN·hm-2·a-1, 10 kgN·hm-2·a-1, 20 kgN·hm-2·a-1 and 40 kgN·hm-2·a-1) to simulate nitrogen deposition in a forest-grassland ecotone in northwest Liaoning Province, China. High-throughput sequencing and qPCR technologies were used to analyze the composition, structure, and diversity characteristics of the soil microbial communities under different levels of nitrogen addition. Results and discussion: The results showed that soil pH decreased significantly at increasing nitrogen concentrations, and the total nitrogen and ammonium nitrogen contents first increased and then decreased, which were significantly higher in the N10 treatment than in other treatments (N:0.32 ~ 0.48 g/kg; NH4+-N: 11.54 ~ 13 mg/kg). With the increase in nitrogen concentration, the net nitrogen mineralization, nitrification, and ammoniation rates decreased. The addition of nitrogen had no significant effect on the diversity and structure of the fungal community, while the diversity of the bacterial community decreased significantly at increasing nitrogen concentrations. Ascomycetes and Actinomycetes were the dominant fungal and bacterial phyla, respectively. The relative abundance of Ascomycetes was negatively correlated with total nitrogen content, while that of Actinomycetes was positively correlated with soil pH. The fungal community diversity was significantly negatively correlated with nitrate nitrogen, while the diversity of the bacterial community was significantly positively correlated with soil pH. No significant differences in the abundance of functional genes related to soil nitrogen transformations under the different treatments were observed. Overall, the distribution pattern and driving factors were different in soil microbial communities in a forest-grassland ecotone in northwest Liaoning. Our study enriches research content related to factors that affect the forest-grassland ecotone.

2.
Food Funct ; 14(12): 5492-5515, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37278147

ABSTRACT

The emergence of pathogens resistant to conventional antibiotics and the growing interest in developing alternative natural antimicrobial agents have prompted a search for plant-derived antimicrobial peptides (PAMPs) in recent years. PAMPs have unique antimicrobial properties, including broad-spectrum activity, rapid killing, and cell selectivity, making them promising candidates for the treatment of animal and human infections caused by pathogens. PAMPs primarily target cell membranes or intracellular components in a variety of ways, which enables them to effectively kill a wide range of microorganisms and reduce the chance of pathogens developing resistance. This article reviewed the classification of PAMPs and the progress of research on the isolation and purification of PAMPs. In addition, a focus was placed on the mechanisms of action of PAMPs, the potential toxicity of PAMPs and their functions and applications in food, agricultural production, animal feed additives, medical, and other possible fields. Finally, the challenges associated with PAMPs applications have been discussed along with molecular-based delivery and chemical modification strategies to overcome these limitations. This review highlights the potential applications of PAMPs, which will not only help to reduce the misuse of antibiotics, but will also be useful for the development of new antimicrobial agents in the future.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Animals , Humans , Pathogen-Associated Molecular Pattern Molecules , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plants , Animal Feed
3.
Front Microbiol ; 13: 1032873, 2022.
Article in English | MEDLINE | ID: mdl-36419422

ABSTRACT

The aim of this work was to reveal the changes in gut microbiota composition and immune responses of sea cucumber (Stichopus variegatus) after being affected by different doses of sulfamethoxazole. In this study, the bacterial 16S rRNA of gut microbiota were analyzed by high-throughput sequencing, and the activities of immune enzymes [lysozyme (LZM), phenoloxidase (PO), alkaline phosphatase (AKP), and acid phosphatase (ACP)] in the gut of S. variegatus were determined. The results showed that the gut microbiota presented a lower richness in the antibiotic treatment groups compared with the control group, and there were significant differences among the dominant bacteria of different concentration treatments. At the genus level, the abundance of Escherichia, Exiguobacterium, Acinetobacter, Pseudomonas, and Thalassotalea were significantly decreased in the 3 mg/L treatment group, while Vibrio was significantly increased. Furthermore, the 6 mg/L treatment group had less effect on these intestinal dominant bacteria, especially Vibrio. The changes in relative abundance of Vibrio at the species level indicated that lower concentrations of sulfamethoxazole could enhance the enrichment of Vibrio mediterranei and Vibrio fortis in S. variegatus more than higher concentrations of sulfamethoxazole. Meanwhile, the 3 mg/L treatment group significantly increased the activities of PO, AKP, and ACP, and decreased the activity of LZM. These results suggested that lower doses of sulfamethoxazole have a greater effect on the gut microbiota composition and immune responses in S. variegatus and may increase the risk of host infection.

4.
Foods ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36359993

ABSTRACT

Although many coatings and films can improve the quality and shelf life of fish fillets during refrigerated storage, a more multifunctional coating material is needed. In this study, an edible alginate/protein-based coating solution was prepared by incorporating antimicrobial agents. The coating properties were characterized and its effects on the quality and shelf life of sturgeon fillets during refrigeration (4 °C) were investigated. Compared with sodium alginate coating (2% sodium alginate + antibacterial agents, H), the composite coatings (2% sodium alginate + antibacterial agents + 1:15 or 1:10 protein solution, HP-15 and HP-10) exhibited a more stable structure and better light, gas, and water barrier properties, and showed better quality-preservation effects on sturgeon fillets. The composite coatings treatments, especially HP-10 composite coating, exhibited significant (p < 0.05) effects in inhibiting microbial growth, maintaining sensory quality, reducing the production of total volatile basic nitrogen (TVB-N), decreasing nucleotide breakdown, and delaying the lipid oxidation and protein degradation in fillets. These findings confirm that the composite coatings can be used as a multifunctional coating material for freshness preservation of sturgeon fillets to improve quality and extend shelf life.

5.
Hortic Res ; 9: uhac150, 2022.
Article in English | MEDLINE | ID: mdl-36072837

ABSTRACT

Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.

6.
Foods ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36140945

ABSTRACT

As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.

7.
Front Microbiol ; 13: 849236, 2022.
Article in English | MEDLINE | ID: mdl-35432233

ABSTRACT

Spoilage bacteria seriously influence the flavor and quality of fish meat. In this study, we investigated the quality characteristics, bacterial community, and volatile profiles of refrigerated (4°C) sturgeon filets during 10-day storage. On day 10, the refrigerated samples showed the lowest bacterial diversity and the largest difference in microbiota and biochemistry. The dominant genera in the fresh samples were Macrococcus, Acinetobacter, Moraxella, Brucella, and Pseudomonas, while the dominant bacteria changed into Acinetobacter, Carnobacterium, Macrococcus, Pseudomonas, and Psychrobacter at the end of storage. Our results suggest that these dominant taxa contribute to the spoilage of the refrigerated sturgeon filets. Meanwhile, during the storage, total viable counts, total volatile basic nitrogen, thiobarbituric acid-reactive substances, and trichloroacetic acid-soluble peptide significantly increased (P < 0.05), while the sensory score decreased steadily. Additionally, the ATP-related compounds and the K-value showed similarly increasing trends. The shelf-life of the refrigerated sturgeon filets was less than 8 days. The gas chromatography-ion mobility spectrometry results suggest that hexanal, ethyl acetate, ethanol, butanal, 1-propanol, isopentyl alcohol, 2-pentanone, 2-heptanone, ethyl propanoate, and propyl sulfide are potential chemical spoilage markers. The predicted metabolic pathways indicated an abundant carbohydrate metabolism and amino metabolism in the refrigerated sturgeon filets. This study provides insight into the determinants of sturgeon shelf-life and the spoilage process involved in refrigerated fish.

8.
Foods ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-37430919

ABSTRACT

Bananas are among the world's main economic crops and one of the world's most-selling fresh fruits. However, a great deal of waste and by-products is produced during banana harvesting and consumption, including stems, leaves, inflorescences, and peels. Some of them have the potential to be used to develop new foods. Furthermore, studies have found that banana by-products contain many bioactive substances that have antibacterial, anti-inflammatory, and antioxidant properties and other functions. At present, research on banana by-products has mainly focused on various utilizations of banana stems and leaves, as well as the extraction of active ingredients from banana peels and inflorescences to develop high-value functional products. Based on the current research on the utilization of banana by-products, this paper summarized the composition information, functions, and comprehensive utilization of banana by-products. Moreover, the problems and future development in the utilization of by-products are reviewed. This review is of great value in expanding the potential applications of banana stems, leaves, inflorescences, and peels, which will not only help to reduce waste of agricultural by-product resources and ecological pollution but will also be useful for the development of essential products as alternative sources of healthy food in the future.

9.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575828

ABSTRACT

Food microbial contamination not only poses the problems of food insecurity and economic loss, but also contributes to food waste, which is another global environmental problem. Therefore, effective packaging is a compelling obstacle for shielding food items from outside contaminants and maintaining its quality. Traditionally, food is packaged with plastic that is rarely recyclable, negatively impacting the environment. Bio-based materials have attracted widespread attention for food packaging applications since they are biodegradable, renewable, and have a low carbon footprint. They provide a great opportunity to reduce the extensive use of fossil fuels and develop food packaging materials with good properties, addressing environmental problems and contributing significantly to sustainable development. Presently, the developments in food chemistry, technology, and biotechnology have allowed us to fine-tune new methodologies useful for addressing major safety and environmental concerns regarding packaging materials. This review presents a comprehensive overview of the development and potential for application of new bio-based materials from different sources in antimicrobial food packaging, including carbohydrate (polysaccharide)-based materials, protein-based materials, lipid-based materials, antibacterial agents, and bio-based composites, which can solve the issues of both environmental impact and prevent foodborne pathogens and spoilage microorganisms. In addition, future trends are discussed, as well as the antimicrobial compounds incorporated in packaging materials such as nanoparticles (NPs), nanofillers (NFs), and bio-nanocomposites.


Subject(s)
Biocompatible Materials , Food Contamination , Food Microbiology , Food Packaging , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biopolymers/chemistry , Chemical Phenomena , Food Contamination/prevention & control , Food Packaging/methods , Food Packaging/trends , Food Preservation , Humans , Nanocomposites/chemistry
10.
Hortic Res ; 8(1): 69, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33790260

ABSTRACT

Grafting is an ancient technique used for plant propagation and improvement in horticultural crops for at least 1,500 years. Citrus plants, with a seed-to-seed cycle of 5-15 years, are among the fruit crops that were probably domesticated by grafting. Poncirus trifoliata, a widely used citrus rootstock, can promote early flowering, strengthen stress tolerance, and improve fruit quality via scion-rootstock interactions. Here, we report its genome assembly using PacBio sequencing. We obtained a final genome of 303 Mb with a contig N50 size of 1.17 Mb and annotated 25,680 protein-coding genes. DNA methylome and transcriptome analyses indicated that the strong adaptability of P. trifoliata is likely attributable to its special epigenetic modification and expression pattern of resistance-related genes. Heterografting by using sweet orange as scion and P. trifoliata as rootstock and autografting using sweet orange as both scion and rootstock were performed to investigate the genetic effects of the rootstock. Single-base methylome analysis indicated that P. trifoliata as a rootstock caused DNA demethylation and a reduction in 24-nt small RNAs (sRNAs) in scions compared to the level observed with autografting, implying the involvement of sRNA-mediated graft-transmissible epigenetic modifications in citrus grafting. Taken together, the assembled genome for the citrus rootstock and the analysis of graft-induced epigenetic modifications provide global insights into the genetic effects of rootstock-scion interactions and grafting biology.

11.
FEMS Microbiol Lett ; 365(10)2018 05 01.
Article in English | MEDLINE | ID: mdl-29462299

ABSTRACT

The marine yeast strain Metschnikowia saccharicola DD21-2, isolated from sediments in the Yalu River, produces a killer toxin with a lethal effect on Metschnikowia bicuspidate strain WCY, a pathogenic yeast strain that infects crabs. In this study, the killer toxin was purified and characterized. After sequential purification, the purity of the killer toxin was increased 72.2-fold over the purity of the yeast cell culture supernatant. The molecular weight of the purified killer toxin was 47.0 kDa. The optimal pH and temperature for killing activity were 5.5°C and 16°C, respectively. The killing activity was stable over a pH range of 4.0-6.5 and temperature range of 0°C-40°C. The purified killer toxin was only effective against toxin-sensitive integral cells and had no killing effect on the protoplasts of toxin-sensitive cells. When exerting the killing effect, the toxin bind to a cell wall receptor of the treated strain, disrupted cell wall integrity and eventually caused death. The amino acid sequence identified by mass spectroscopy indicated that the purified killer toxin might be a protein kinase, but did not show ß-1,3-glucanase activity, consistent with the laminarin hydrolysis results. These findings provide a basis for disease prevention and control in marine aquaculture.


Subject(s)
Brachyura/microbiology , Killer Factors, Yeast/isolation & purification , Killer Factors, Yeast/toxicity , Metschnikowia/chemistry , Yeasts/drug effects , Amino Acid Sequence , Animals , Hot Temperature , Hydrogen-Ion Concentration , Killer Factors, Yeast/chemistry , Killer Factors, Yeast/metabolism , Metschnikowia/metabolism , Molecular Weight , Yeasts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...