Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 52(2): 313-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17169570

ABSTRACT

The membrane-anchored metalloproteinase ADAM17 (TNF-alpha converting enzyme; TACE; EC 3.4.24.86) continues to be an attractive drug target in inflammatory diseases and cancer. Cocrystallization of its catalytic domain with a lead compound was complicated by the tenacious retention of the prodomain that has been shown to be enhanced if ADAM17 is expressed without the disintegrin/cysteine-rich domain that normally follows the N-terminal metalloproteinase. When a truncated form of ADAM17 composed of the signal peptide with the pro- and catalytic domains was expressed in baculovirus-infected insect cells, the major secreted product was a ternary complex of two prodomain fragments with the catalytic domain. The component polypeptides of the ternary complex were characterized by N-terminal analysis and mass spectrometry. Internal cleavage of the propeptide occurred following Arg-58, and a carboxypeptidase variably removed up to three basic residues from the newly created C-terminus. Cleavage at the C-terminus of the propeptide occurred after Arg-214. To prepare ADAM17 for crystal growth, a drug-like inhibitor was used to displace the propeptide and the complex of the catalytic domain with the inhibitor was isolated by size-exclusion chromatography and crystallized.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Catalytic Domain , Hydroxamic Acids/pharmacology , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM17 Protein , Chromatography, Gel , Chromatography, High Pressure Liquid , Crystallization , Enzyme Inhibitors/pharmacology , Gene Expression , Humans , Mass Spectrometry
2.
Bioorg Med Chem Lett ; 12(10): 1387-90, 2002 May 20.
Article in English | MEDLINE | ID: mdl-11992783

ABSTRACT

A series of novel, selective TNF-alpha converting enzyme inhibitors based on 4-hydroxy and 5-hydroxy pipecolate hydroxamic acid scaffolds is described. The potency and selectivity of TACE inhibition is dramatically influenced by the nature of the sulfonamide group which interacts with the S1' site of the enzyme. Substituted 4-benzyloxybenzenesulfonamides exhibit excellent TACE potency with >100x selectivity over inhibition of matrix metalloprotease-1 (MMP-1). Alkyl substituents on the ortho position of the benzyl ether moiety give the most potent inhibition of TNF-alpha release in LPS-treated human whole blood.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Metalloendopeptidases/antagonists & inhibitors , Pipecolic Acids/chemical synthesis , ADAM Proteins , ADAM17 Protein , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Models, Molecular , Molecular Conformation , Pipecolic Acids/chemistry , Pipecolic Acids/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
3.
J Proteome Res ; 1(2): 181-7, 2002.
Article in English | MEDLINE | ID: mdl-12643538

ABSTRACT

Enzymatic digests of proteins S-alkylated with iodoacetamide may contain peptides with N-terminal S-carbamoylmethylcysteine. These can be partly converted to a form with 17 Da lower mass and increased HPLC retention. Proof by synthesis supported by MS/MS and NMR spectroscopy was used to show that N-terminal S-carbamoylmethyl-L-cysteine can cyclize, losing NH3 to form an N-terminal residue of (R)-5-oxoperhydro-1,4-thiazine-3-carboxylic acid. The abbreviation Otc is proposed for the (R)-5-oxoperhydro-1,4-thiazine-3-carbonyl residue. The rate of cyclization is significant in 0.1 M NH4HCO3 at 37 degrees C, with the half-life of the acyclic form being 10-12 h for several peptides tested. This is similar to the rate at which N-terminal pyroglutamate forms from N-terminal glutamine.


Subject(s)
Cysteine/analogs & derivatives , Peptides, Cyclic/chemical synthesis , Peptides/analysis , Chromatography, High Pressure Liquid , Iodoacetamide/metabolism , Mass Spectrometry , Peptides/metabolism , Peptides, Cyclic/analysis , Peptides, Cyclic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...