Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(19): e2201560, 2023 07.
Article in English | MEDLINE | ID: mdl-37071479

ABSTRACT

Anticancer drug resistance is a large contributing factor to the global mortality rate of cancer patients. Anticancer macromolecules such as polymers have been recently reported to overcome this issue. Anticancer macromolecules have unselective toxicity because they are highly positively charged. Herein, an anionic biodegradable polycarbonate carrier is synthesized and utilized to form nanocomplexes with an anticancer polycarbonate via self-assembly to neutralize its positive charges. Biotin is conjugated to the anionic carrier and serves as cancer cell-targeting moiety. The nanoparticles have sizes of < 130 nm with anticancer polymer loading levels of 38-49%. Unlike the small molecular anticancer drug doxorubicin, the nanocomplexes effectively inhibit the growth of both drug-susceptible MCF7 and drug-resistant MCF7/ADR human breast cancer cell lines with low half maximal inhibitory concentration (IC50 ). The nanocomplexes increase the anticancer polymer's in vivo half-life from 1 to 6-8 h, and rapidly kill BT474 human breast cancer cells primarily via an apoptotic mechanism. The nanocomplexes significantly increase the median lethal dose (LD50 ) and reduce the injection site toxicity of the anticancer polymer. They suppress tumor growth by 32-56% without causing any damage to the liver and kidneys. These nanocomplexes may potentially be used for cancer treatment to overcome drug resistance.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Humans , Female , Half-Life , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Doxorubicin/pharmacology , Nanoparticles/toxicity , Polymers , Breast Neoplasms/drug therapy
2.
Adv Healthc Mater ; 6(16)2017 Aug.
Article in English | MEDLINE | ID: mdl-28504348

ABSTRACT

In this study, antimicrobial polymers are synthesized by the organocatalytic ring-opening polymerization of an eight-membered heterocyclic carbonate monomer that is subsequently quaternized with methyl iodide. These polymers demonstrate activity against clinically relevant Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans with fast killing kinetics. Importantly, the polymer efficiently inhibits biofilm growth and lyses existing biofilm, leading to a reduction in biomass and cell viability. In addition, the macromolecular antimicrobial is less likely to induce resistance as it acts via a membrane-lytic mechanism. The polymer is not cytotoxic toward mammalian cells with LD50 of 99.0 ± 11.6 mg kg-1 in mice through i.v. injection. In an S. aureus blood stream infection mouse model, the polymer removes bacteria from the blood more rapidly than the antibiotic Augmentin. At the effective dose, the polymer treatment does not damage liver and kidney tissues or functions. In addition, blood electrolyte balance remains unchanged after the treatment. The low cost of starting materials, ease of synthesis, nontoxicity, broad spectrum activity with fast killing kinetics, and in vivo antimicrobial activity make these macromolecular antimicrobials ideal candidates for prevention of sepsis and treatment of infections.


Subject(s)
Anti-Infective Agents , Biofilms/drug effects , Heterocyclic Compounds, 4 or More Rings , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/toxicity , Bacteremia/drug therapy , Female , Hemolysis/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Heterocyclic Compounds, 4 or More Rings/toxicity , Mice , Mice, Inbred BALB C , Polymerization , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects
3.
Biomacromolecules ; 18(1): 178-188, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28064501

ABSTRACT

Introduction of hydrophilic components, particularly amines and zwitterions, onto a degradable polymer platform, while maintaining precise control over the polymer composition, has been a challenge. Recognizing the importance of these hydrophilic residues in multiple aspects of the nanobiomedicine field, herein, a straightforward synthetic route to access well-defined amphiphilic and hydrophilic degradable block copolymers from diethanolamine-derived functional eight-membered N-substituted aliphatic cyclic carbonates is reported. By this route, tertiary amine, secondary amine, and zwitterion residues can be incorporated across the polymer backbone. Demonstration of pH-responsiveness of these hydrophilic residues and their utility in the development of drug-delivery vehicles, catered for the specific requirements of respective model drugs (doxorubicin and diclofenac sodium salt) are shown. As hydrophilic components in degradable polymers play crucial roles in the biological interactions, these materials offers opportunities to expand the scope and applicability of aliphatic cyclic carbonates. Our approach to these functional polycarbonates will expand the range of biocompatible and biodegradable synthetic materials available for nanobiomedicine, including drug and gene delivery, antimicrobials, and hydrophilic polymers as poly(ethylene glycol) (PEG) alternatives.


Subject(s)
Biocompatible Materials/chemistry , Carbonates/chemistry , Diclofenac/metabolism , Doxorubicin/metabolism , Macromolecular Substances/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Diclofenac/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Humans , Hydrophobic and Hydrophilic Interactions
4.
Sci Rep ; 6: 35110, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27739449

ABSTRACT

Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Lipids/analysis , Mutant Proteins/genetics , Pleural Effusion/pathology , Aged , Aged, 80 and over , Biomarkers/analysis , Chromatography, Liquid , Female , Humans , Male , Mass Spectrometry , Metabolomics , Middle Aged
5.
Bioconjug Chem ; 26(5): 955-61, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25938732

ABSTRACT

Current anticancer chemotherapy often suffers from poor tumor selectivity and serious drug resistance. Proper vectors for targeted delivery and controlled drug release play crucial roles in improving the therapeutic selectivity to tumor areas and also overcoming the resistance of cancer cells. In this work, we developed a novel human serum albumin (HSA) protein-based nanocarrier system, which combines the photoactivatable Pt(IV) antitumor prodrug for realizing the controlled release and fluorescent light-up probe for evaluations of drug action and efficacy. The constructed Pt(IV)-probe@HSA platform can be locally activated by light irradiation to release the active Pt species, which results in enhanced cell death at both drug-sensitive A2780 and cisplatin-resistant A2780cis cell lines when compared to the free prodrug molecules. Simultaneously, the cytotoxicity caused by light controlled drug release would further lead to the cellular apoptosis and trigger the activation of caspases 3, one crucial protease enzyme in apoptotic process, which could cleave the recognition peptide moiety (DEVD) with a flanking fluorescent resonance energy transfer (FRET) pair containing near-infrared (NIR) fluorophore Cy5 and quencher Qsy21 on the HSA nanocarrier surface. The turn-on fluorescence in response to caspase-3 could be assessed by fluorescence microscopy and flow cytometry analysis. Our results supported the hypothesis that such a unique design may present a successful platform for multiple roles: (i) a biocompatible protein-based nanocarrier for drug delivery, (ii) the controlled drug release with strengthened therapeutic effects, (iii) real-time monitoring of antitumor drug efficacy at the earlier stage.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Intracellular Space/metabolism , Light , Molecular Imaging , Organoplatinum Compounds/chemistry , Prodrugs/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Caspase 3/metabolism , Cell Line, Tumor , Drug Liberation , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Humans , Models, Molecular , Molecular Conformation , Nanostructures/chemistry , Optical Imaging , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacology , Prodrugs/metabolism , Time Factors
6.
J Chromatogr A ; 1319: 65-71, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24183595

ABSTRACT

Recombinant antibodies with high isoelectric point are frequent since most of them are constructed from the same framework. Classically, cation exchange chromatography is used as a standard method for the determination of antibody charge heterogeneity. In contrast, in this study highly linear pH gradients were achieved by keeping the buffering capacity over the length of the gradient constant. The buffering compounds were selected to be unretained on the column and their respective concentration was adjusted in the start and end buffer of the pH gradient to achieve constant buffering capacity. This helps conserve linearity and stability of the gradient. The method allows quantification of charge variant distribution and the determination of chromatographic isoelectric point. To demonstrate the effectiveness of this novel method, a ProPac WCX-10 column was used to separate isoforms of trastuzumab biosimilar antibodies. Effects of pH gradient linearity and of varying the analytical amount of sample on the separation are shown.


Subject(s)
Antibodies, Monoclonal/chemistry , Hydrogen-Ion Concentration , Chromatography, Ion Exchange , Isoelectric Point
7.
Pharm Res ; 30(3): 735-50, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23143394

ABSTRACT

PURPOSE: To develop a liquid formulation for IgMs to survive physical stress and storage. METHODS: Stabilizing formulations for 8 monoclonal immunoglobulin (IgMs) were found using differential scanning calorimetry (DSC). In these formulations, the IgMs were subjected to stress and storage and analyzed by size exclusion chromatography and fluorescence activated cell sorting. Structure was analyzed using small-angle X-ray scattering (SAXS). RESULTS: The highest conformational stability was found near the isoelectric point and further enhanced by addition of sorbitol, sucrose and glycine. For 2 IgMs, the pH optimum for conformational and storage stability did not correspond. Lowering the pH led to the desired storage stability. Optimized formulations prevented aggregation and fragmentation from shear stress, freeze-thaw cycles, accelerated storage and real time storage at 4°C and -20°C for 12 months. Optimized formulations also preserved immunoreactivity for 12 months. SAXS indicated that IgM in stabilizing conditions was closer to the structural IgM model (2RCJ) and less susceptible for aggregation. CONCLUSIONS: A long-term stabilizing formulation for 8 IgMs was found comprising 20% sorbitol and 1 M glycine at pH 5.0-5.5 which may have broad utility for other IgMs. Formulation development using DSC and accelerated storage was evaluated in this study and may be used for other proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Excipients/chemistry , Immunoglobulin M/chemistry , Animals , Calorimetry, Differential Scanning , Chromatography, Gel , Drug Storage , Glycine/chemistry , Mice , Protein Conformation , Protein Stability , Scattering, Small Angle , Sorbitol/chemistry , Sucrose/chemistry , X-Ray Diffraction
8.
J Med Chem ; 52(14): 4400-18, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19522463

ABSTRACT

Recent evidence suggests that blocking aberrant hedgehog pathway signaling may be a promising therapeutic strategy for the treatment of several types of cancer. Cyclopamine, a plant Veratrum alkaloid, is a natural product antagonist of the hedgehog pathway. In a previous report, a seven-membered D-ring semisynthetic analogue of cyclopamine, IPI-269609 (2), was shown to have greater acid stability and better aqueous solubility compared to cyclopamine. Further modifications of the A-ring system generated three series of analogues with improved potency and/or solubility. Lead compounds from each series were characterized in vitro and evaluated in vivo for biological activity and pharmacokinetic properties. These studies led to the discovery of IPI-926 (compound 28), a novel semisynthetic cyclopamine analogue with substantially improved pharmaceutical properties and potency and a favorable pharmacokinetic profile relative to cyclopamine and compound 2. As a result, complete tumor regression was observed in a Hh-dependent medulloblastoma allograft model after daily oral administration of 40 mg/kg of compound 28.


Subject(s)
Drug Discovery , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Signal Transduction/drug effects , Veratrum Alkaloids/administration & dosage , Veratrum Alkaloids/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Humans , Liver/cytology , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Microsomes/drug effects , Microsomes/metabolism , Stereoisomerism , Veratrum Alkaloids/chemistry , Veratrum Alkaloids/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...