Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 6(16)2017 Aug.
Article in English | MEDLINE | ID: mdl-28504348

ABSTRACT

In this study, antimicrobial polymers are synthesized by the organocatalytic ring-opening polymerization of an eight-membered heterocyclic carbonate monomer that is subsequently quaternized with methyl iodide. These polymers demonstrate activity against clinically relevant Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and fungus Candida albicans with fast killing kinetics. Importantly, the polymer efficiently inhibits biofilm growth and lyses existing biofilm, leading to a reduction in biomass and cell viability. In addition, the macromolecular antimicrobial is less likely to induce resistance as it acts via a membrane-lytic mechanism. The polymer is not cytotoxic toward mammalian cells with LD50 of 99.0 ± 11.6 mg kg-1 in mice through i.v. injection. In an S. aureus blood stream infection mouse model, the polymer removes bacteria from the blood more rapidly than the antibiotic Augmentin. At the effective dose, the polymer treatment does not damage liver and kidney tissues or functions. In addition, blood electrolyte balance remains unchanged after the treatment. The low cost of starting materials, ease of synthesis, nontoxicity, broad spectrum activity with fast killing kinetics, and in vivo antimicrobial activity make these macromolecular antimicrobials ideal candidates for prevention of sepsis and treatment of infections.


Subject(s)
Anti-Infective Agents , Biofilms/drug effects , Heterocyclic Compounds, 4 or More Rings , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/toxicity , Bacteremia/drug therapy , Female , Hemolysis/drug effects , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Heterocyclic Compounds, 4 or More Rings/toxicity , Mice , Mice, Inbred BALB C , Polymerization , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects
2.
Biomacromolecules ; 18(1): 178-188, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28064501

ABSTRACT

Introduction of hydrophilic components, particularly amines and zwitterions, onto a degradable polymer platform, while maintaining precise control over the polymer composition, has been a challenge. Recognizing the importance of these hydrophilic residues in multiple aspects of the nanobiomedicine field, herein, a straightforward synthetic route to access well-defined amphiphilic and hydrophilic degradable block copolymers from diethanolamine-derived functional eight-membered N-substituted aliphatic cyclic carbonates is reported. By this route, tertiary amine, secondary amine, and zwitterion residues can be incorporated across the polymer backbone. Demonstration of pH-responsiveness of these hydrophilic residues and their utility in the development of drug-delivery vehicles, catered for the specific requirements of respective model drugs (doxorubicin and diclofenac sodium salt) are shown. As hydrophilic components in degradable polymers play crucial roles in the biological interactions, these materials offers opportunities to expand the scope and applicability of aliphatic cyclic carbonates. Our approach to these functional polycarbonates will expand the range of biocompatible and biodegradable synthetic materials available for nanobiomedicine, including drug and gene delivery, antimicrobials, and hydrophilic polymers as poly(ethylene glycol) (PEG) alternatives.


Subject(s)
Biocompatible Materials/chemistry , Carbonates/chemistry , Diclofenac/metabolism , Doxorubicin/metabolism , Macromolecular Substances/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Diclofenac/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Humans , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...