Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 32(32): 8218-25, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21807406

ABSTRACT

In this paper, we explored how ZnO nanoparticles cross-interact with a critical tumor suppressive pathway centered around p53, which is one of the most important known tumor suppressors that protects cells from developing cancer phenotypes through its control over major pathways like apoptosis, senescence and cell cycle progression. We showed that the p53 pathway was activated in BJ cells (skin fibroblasts) upon ZnO nanoparticles treatment with a concomitant decrease in cell numbers. This suggests that cellular responses like apoptosis in the presence of ZnO nanoparticles require p53 as the molecular master switch towards programmed cell death. This also suggests that in cells without robust p53, protective response can be tipped towards carcinogenesis when stimulated by DNA damage inducing agents like ZnO nanoparticles. We observed this precarious tendency in the same BJ cells with p53 knocked down using endogeneous expressing shRNA. These p53 knocked down BJ cells became more resistant to ZnO nanoparticles induced cell death and increased cell progression. Collectively, our results suggest that cellular response towards specific nanoparticle induced cell toxicity and carcinogenesis is not only dependent on specific nanoparticle properties but also (perhaps more importantly) the endogenous genetic, transcriptomic and proteomic landscape of the target cells.


Subject(s)
DNA Damage , Nanoparticles/toxicity , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Zinc Oxide/toxicity , Animals , Cell Death/drug effects , Cell Line , Humans , Mice , Models, Biological , Mutagens/toxicity , Nanoparticles/ultrastructure
2.
Arch Toxicol ; 85(12): 1517-28, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21656222

ABSTRACT

Zinc oxide (ZnO) nanoparticles have wide-ranging applications in a diverse array of industrial and consumer products, from ceramic manufacture and paint formulation to sunscreens and haircare products. Hence, it is imperative to rigorously characterize the health and safety aspects of human exposure to ZnO nanoparticles. This study therefore evaluated the cellular association, cytotoxic and inflammatory potential of spherical and sheet-shaped ZnO nanoparticles (of approximately the same specific surface area ≈30 cm²/g) on mouse and human cell lines (RAW-264.7 and BEAS-2B respectively), as well as with primary cultures of mouse bone marrow-derived dendritic cells (DC). The WST-8 assay demonstrated dose-dependent effects on the cytotoxicity of spherical and sheet-shaped ZnO nanoparticles on both RAW-264.7 and BEAS-2B cells, even though there was no significant effect of shape on the cytotoxicity of ZnO nanoparticles. There was however higher cellular association of spherical versus sheet-shaped ZnO nanoparticles. Measurement of reactive oxygen species (ROS) with the 2',7'-dichlorfluorescein-diacetate (DCFH-DA) assay indicated up to 4-folds increase in ROS level upon exposure to ZnO nanoparticles, but there was again no significant difference between both ZnO nanoparticle shapes. Exposure of primary dendritic cells to ZnO nanoparticles upregulated expression of CD80 and CD86 (well-known markers of DC activation and maturation) and stimulated release of pro-inflammatory cytokines--IL-6 and TNF-α, thus pointing to the potential of ZnO nanoparticles in inducing inflammation. Hence, our study indicated that ZnO nanoparticles can have potential detrimental effects on cells even at dosages where there are little or no observable cytotoxic effects.


Subject(s)
Inflammation/chemically induced , Nanoparticles , Reactive Oxygen Species/metabolism , Zinc Oxide/toxicity , Animals , Bronchi/cytology , Bronchi/drug effects , Bronchi/metabolism , Cell Line , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Toxicity Tests , Zinc Oxide/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...