Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37962055

ABSTRACT

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Subject(s)
Biosensing Techniques , Nanofibers , Biosensing Techniques/methods , Silk , Semiconductors , Bacteria
2.
Adv Mater ; 34(28): e2201470, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35388558

ABSTRACT

Integrating synthetic low-dimensional nanomaterials such as metal-organic framework (MOF) nanosheets with a sustainable biopolymer is a promising strategy to endow composites with attractive structural and functional properties for expanded applications. Herein, aggregation-induced-emission luminogen (AIEgen)-based MOF bulk crystals are successfully exfoliated into ultrathin 2D nanosheets. Seaweed cellulose nanofibrils (CNFs) are assembled with low amounts (0.3 to 4.0 wt%) of the 2D nanosheets to generate luminescent composites. The 2D nanosheets are adsorbed onto the CNFs in dilute water suspensions owing to the flexibility of the MOF nanosheets and the high aspect ratio of the CNFs. Transparent films are prepared by solution casting from a water suspension of the CNF-MOF assembly. The fluorescence emission of the composite films is enhanced because of the favored affinity between MOF nanosheets and CNFs. Remarkably, these films demonstrate excellent UV-shielding capacity and high optical transmittance at the visible wavelength range. The composite films also show reversible changes in fluorescence emission intensity in response to ambient humidity. The tensile strength and modulus of the composite films are also enhanced owing to the increased adhesion between CNFs through the adsorbed MOF nanosheets. This work provides a novel pathway to fabricate luminescent CNFs-based composites with tunable optical properties for functional materials.


Subject(s)
Metal-Organic Frameworks , Nanofibers , Seaweed , Cellulose/chemistry , Humidity , Nanofibers/chemistry , Ultraviolet Rays , Water
3.
Adv Mater ; : e1800726, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29845666

ABSTRACT

The flexibility and unexpected dynamic behavior of a third-generation metal-organic framework are described for the first time. The synthetic strategy is based on the flexibility and spherical shape of dipyridyl-based carborane linkers that act as pillars between rigid Co/BTB (BTB: 1,3,5-benzenetricarboxylate) layers, providing a 3D porous structure (1). A phase transition of the solid can be induced to generate a new, nonporous 2D structure (2) without any loss of the carborane linkers. The structural transformation is visualized by snapshots of the multistep single-crystal-to-single-crystal transformation by single-crystal and powder X-ray diffraction. Poor hydrogen bond acceptors such as MeOH, CHCl3 or supercritical CO2 induce such a 3D to 2D transformation. Remarkably, the transformation is reversible and the 2D phase 2 is further converted back into 1 by heating in dimethylformamide. The energy requirements involved in such processes are investigated using periodic density functional theory calculations. As a proof of concept for potential applications, encapsulation of C60 is achieved by trapping this molecule during the reversible 2D to 3D phase transition, whereas no adsorption is observed by straight solvent diffusion into the pores of the 3D phase.

SELECTION OF CITATIONS
SEARCH DETAIL