Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6193, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794017

ABSTRACT

Thermophilic cell factories have remarkably broad potential for industrial applications, but are limited by a lack of genetic manipulation tools and recalcitrance to transformation. Here, we identify a thermophilic type I-B CRISPR-Cas system from Parageobacillus thermoglucosidasius and find it displays highly efficient transcriptional repression or DNA cleavage activity that can be switched by adjusting crRNA length to less than or greater than 26 bp, respectively, without ablating Cas3 nuclease. We then develop an orthogonal tool for genome editing and transcriptional repression using this type I-B system in both thermophile and mesophile hosts. Empowered by this tool, we design a strategy to screen the genome-scale targets involved in transformation efficiency and established dynamically controlled supercompetent P. thermoglucosidasius cells with high efficiency ( ~ 108 CFU/µg DNA) by temporal multiplexed repression. We also demonstrate the construction of thermophilic riboflavin cell factory with hitherto highest titers in high temperature fermentation by genome-scale identification and combinatorial manipulation of multiple targets. This work enables diverse high-efficiency genetic manipulation in P. thermoglucosidasius and facilitates the engineering of thermophilic cell factories.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering , CRISPR-Cas Systems/genetics , Gene Editing , Endonucleases/genetics , Gene Expression
3.
STAR Protoc ; 4(3): 102435, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37432853

ABSTRACT

Large biosynthetic gene cluster (BGC) cloning is important for discovering natural product-based drugs and remains challenging in high GC content microorganisms (e.g., Actinobacteria). Here, we present an in vitro CRISPR-Cas12a-mediated protocol for direct cloning of large DNA fragments. We describe steps for crRNA design and preparation, genomic DNA isolation, and CRISPR-Cas12a cleavage and capture plasmid construction and linearization. We then detail target BGC and plasmid DNA ligation and transformation and screening for positive clones. For complete details on the use and execution of this protocol, please refer to Liang et al.1.


Subject(s)
CRISPR-Cas Systems , DNA , CRISPR-Cas Systems/genetics , Cloning, Molecular , Genomics
4.
Synth Syst Biotechnol ; 8(2): 213-219, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36875498

ABSTRACT

Nucleic acid detection plays a key role in diverse diagnosis and disease control. Currently available nucleic acid detection techniques are challenged by trade-offs among speed, simplicity, precision and cost. Here, we described a novel method, designated SENSOR (Sulfur DNA mediated nucleic acid sensing platform), for rapid nucleic acid detection. SENSOR was developed from phosphorothioate (PT)-DNA and sulfur binding domain (SBD) which specifically binds double-stranded PT-modified DNA. SENSOR utilizes PT-DNA oligo and SBD as targeting module, which is linked with split luciferase reporter to generate luminescence signal within 10 min. We tested detection on synthesized nucleic acid and COVID-19 pseudovirus, achieving attomolar sensitivity combined with an amplification procedure. Single nucleotide polymorphisms (SNP) could also be discriminated. Indicating SENSOR a new promising nucleic acid detection technique.

5.
Trends Biotechnol ; 41(8): 1080-1095, 2023 08.
Article in English | MEDLINE | ID: mdl-36967257

ABSTRACT

A biosensor is an analytical device that converts a biological response into a measurable output signal. Bacterial allosteric transcription factors (aTFs) have been utilized as a novel class of recognition elements for in vitro biosensing, which circumvents the limitations of aTF-based whole-cell biosensors (WCBs) and helps to meet the increasing requirement of small-molecule biosensors for diverse applications. In this review, we summarize the recent advances related to the configuration of aTF-based biosensors in vitro. Particularly, we evaluate the advantages of aTFs for in vitro biosensing and highlight their great potential for the establishment of robust and easy-to-implement biosensing strategies. We argue that key technical innovations and generalizable workflows will enhance the pipeline for facile construction of diverse aTF-based small-molecule biosensors.


Subject(s)
Biosensing Techniques , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Bacteria/metabolism
6.
Nucleic Acids Res ; 50(6): 3581-3592, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35323947

ABSTRACT

Direct cloning of biosynthetic gene clusters (BGCs) from microbial genomes facilitates natural product-based drug discovery. Here, by combining Cas12a and the advanced features of bacterial artificial chromosome library construction, we developed a fast yet efficient in vitro platform for directly capturing large BGCs, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). As demonstrations, several large BGCs from different actinomycetal genomic DNA samples were efficiently captured by CAT-FISHING, the largest of which was 145 kb with 75% GC content. Furthermore, the directly cloned, 110 kb long, cryptic polyketide encoding BGC from Micromonospora sp. 181 was then heterologously expressed in a Streptomyces chassis. It turned out to be a new macrolactam compound, marinolactam A, which showed promising anticancer activity. Our results indicate that CAT-FISHING is a powerful method for complicated BGC cloning, and we believe that it would be an important asset to the entire community of natural product-based drug discovery.


Subject(s)
Biological Products , Streptomyces , CRISPR-Cas Systems , Cloning, Molecular , Multigene Family , Streptomyces/genetics
7.
Synth Syst Biotechnol ; 6(4): 335-342, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34738044

ABSTRACT

The versatile photosynthetic α-proteobacterium Rhodobacter sphaeroides, has recently been extensively engineered as a novel microbial cell factory (MCF) to produce pharmaceuticals, nutraceuticals, commodity chemicals and even hydrogen. However, there are no well-characterized high-activity promoters to modulate gene transcription during the engineering of R. sphaeroides. In this study, several native promoters from R. sphaeroides JDW-710 (JDW-710), an industrial strain producing high levels of co-enzyme Q10 (Q10) were selected on the basis of transcriptomic analysis. These candidate promoters were then characterized by using gusA as a reporter gene. Two native promoters, P rsp _ 7571 and P rsp _ 6124 , showed 620% and 800% higher activity, respectively, than the tac promoter, which has previously been used for gene overexpression in R. sphaeroides. In addition, a P rsp _ 7571 -derived synthetic promoter library with strengths ranging from 54% to 3200% of that of the tac promoter, was created on the basis of visualization of red fluorescent protein (RFP) expression in R. sphaeroides. Finally, as a demonstration, the synthetic pathway of Q10 was modulated by the selected promoter T334* in JDW-710; the Q10 yield in shake-flasks increased 28% and the production reached 226 mg/L. These well-characterized promoters should be highly useful in current synthetic biology platforms for refactoring the biosynthetic pathway in R. sphaeroides-derived MCFs.

8.
Synth Syst Biotechnol ; 6(4): 283-291, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34541346

ABSTRACT

Antigen detection provides particularly valuable information for medical diagnoses; however, the current detection methods are less sensitive and accurate than nucleic acid analysis. The combination of CRISPR/Cas12a and aptamers provides a new detection paradigm, but sensitive sensing and stable amplification in antigen detection remain challenging. Here, we present a PCR-free multiple trigger dsDNA tandem-based signal amplification strategy and a de novo designed dual aptamer synergistic sensing strategy. Integration of these two strategies endowed the CRISPR/Cas12a and aptamer-based method with ultra-sensitive, fast, and stable antigen detection. In a demonstration of this method, the limit of detection was at the single virus level (0.17 fM, approximately two copies/µL) in SARS-CoV-2 antigen nucleocapsid protein analysis of saliva or serum samples. The entire procedure required only 20 min. Given our system's simplicity and modular setup, we believe that it could be adapted reasonably easily for general applications in CRISPR/Cas12a-aptamer-based detection.

9.
Curr Opin Biotechnol ; 69: 299-307, 2021 06.
Article in English | MEDLINE | ID: mdl-34102376

ABSTRACT

Natural product derived pesticides have increased in popularity worldwide because of their high efficacy, eco-friendly nature and favorable safety profile. The development of polyketide pesticides from actinomycetes reflects this increase in popularity in the past decades. These pesticides, which include avermectins, spinosyns, polynactins, tetramycin and their analogues, have been successfully applied in crop protection. Moreover, the advance of biotechnology has led to continuous improvement in the discovery and production processes. In this review, we summarize these polyketide pesticides, their activities and provide insight into their development. We also discuss engineering strategies and the current status of industrial production for these pesticides. Given that actinomycetes are known to produce a wide range of bioactive secondary metabolites, the description of pesticide development and high yield strain improvement presented herein will facilitate further development of these valuable polyketide pesticides from actinomycetes.


Subject(s)
Actinobacteria , Biological Products , Pesticides , Polyketides , Actinobacteria/genetics , Actinomyces
10.
Sci Bull (Beijing) ; 66(1): 69-77, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-36654316

ABSTRACT

Rapid and sensitive detection of various analytes is in high demand. Apart from its application in genome editing, CRISPR-Cas also shows promises in nucleic acid detection applications. To further exploit the potential of CRISPR-Cas for detection of diverse analytes, we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12a. We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background, i.e., the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 µmol/L, respectively, highlighting the advantages of simplicity, sensitivity, short detection time, and low cost compared with the state-of-the-art biosensing approaches. Altogether, this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.

11.
Nat Commun ; 10(1): 3672, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413315

ABSTRACT

Besides genome editing, CRISPR-Cas12a has recently been used for DNA detection applications with attomolar sensitivity but, to our knowledge, it has not been used for the detection of small molecules. Bacterial allosteric transcription factors (aTFs) have evolved to sense and respond sensitively to a variety of small molecules to benefit bacterial survival. By combining the single-stranded DNA cleavage ability of CRISPR-Cas12a and the competitive binding activities of aTFs for small molecules and double-stranded DNA, here we develop a simple, supersensitive, fast and high-throughput platform for the detection of small molecules, designated CaT-SMelor (CRISPR-Cas12a- and aTF-mediated small molecule detector). CaT-SMelor is successfully evaluated by detecting nanomolar levels of various small molecules, including uric acid and p-hydroxybenzoic acid among their structurally similar analogues. We also demonstrate that our CaT-SMelor directly measured the uric acid concentration in clinical human blood samples, indicating a great potential of CaT-SMelor in the detection of small molecules.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Transcription Factors , Allosteric Regulation , Biological Assay , Clostridiales , Humans , Limit of Detection , Nucleotide Motifs , Parabens , Synthetic Biology , Uric Acid/blood
12.
Synth Syst Biotechnol ; 4(4): 212-219, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31890925

ABSTRACT

Coenzyme Q10 (CoQ10) is an important component of the respiratory chain in humans and some bacteria. As a high-value-added nutraceutical antioxidant, CoQ10 has excellent capacity to prevent cardiovascular disease. The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels. In this study, we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain. Moreover, under phosphate- limited conditions (decreased phosphate or in the absence of inorganic phosphate addition), CoQ10 production increased significantly by 12% to220 mg/L, biomass decreased by 12%, and the CoQ10 productivity of unit cells increased by 27%. In subsequent fed-batch fermentation, CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation. Furthermore, to understand the mechanism associated with CoQ10 overproduction under phosphate- limited conditions, the comparatve transcriptome analysis was performed. These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01. Phosphate limitation induced a pleiotropic effect on cell metabolism, and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.

13.
Curr Opin Biotechnol ; 48: 251-257, 2017 12.
Article in English | MEDLINE | ID: mdl-29049952

ABSTRACT

Microbial strains are amazingly clever by homeostasis of their own survival and optimization for the overproduction of a desired phenotype, for example drugable secondary metabolites through coordination of key genes overexpression and media optimizations. Besides their pesticide activities, avermectins (AVMs) are identified as potent antibiotic agents for a wide range of drug-resistant pathogens by a high-throughput synergy screening strategy. To rewire the genetic circuitry controlling low yields, we summarized the work on balancing the biological chassis with functional parts, and optimized their dynamical process, as well as predicted favorable effective overproduction of AVMs by 5Ms strategy. AVMs are exclusively made in China now and intelligences learned from the success of AVMs will help transform microbes into a true power-house of innovation.


Subject(s)
Bacteria/metabolism , Ivermectin/analogs & derivatives , Bacteria/genetics , Biosynthetic Pathways , Fermentation , Genetic Engineering , Humans , Ivermectin/chemistry , Ivermectin/metabolism
14.
ACS Synth Biol ; 6(6): 995-1005, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28264562

ABSTRACT

With the advent of the genomics era, heterologous gene expression has been used extensively as a means of accessing natural products (NPs) from environmental DNA samples. However, the heterologous production of NPs often has very low efficiency or is unable to produce targeted NPs. Moreover, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in native producers, especially in the cases of genome mining, it is also difficult to rationally and systematically engineer synthetic pathways to improved NPs biosynthetic efficiency. In this study, various strategies ranging from heterologous production of a NP to subsequent application of omics-guided synthetic modules optimization for efficient biosynthesis of NPs with complex structure have been developed. Heterologous production of spinosyn in Streptomyces spp. has been demonstrated as an example of the application of these approaches. Combined with the targeted omics approach, several rate-limiting steps of spinosyn heterologous production in Streptomyces spp. have been revealed. Subsequent engineering work overcame three of selected rate-limiting steps, and the production of spinosad was increased step by step and finally reached 1460 µg/L, which is about 1000-fold higher than the original strain S. albus J1074 (C4I6-M). These results indicated that the omics platform developed in this work was a powerful tool for guiding the rational refactoring of heterologous biosynthetic pathway in Streptomyces host. Additionally, this work lays the foundation for further studies aimed at the more efficient production of spinosyn in a heterologous host. And the strategy developed in this study is expected to become readily adaptable to highly efficient heterologous production of other NPs with complex structure.


Subject(s)
Macrolides/metabolism , Metabolic Engineering/methods , Multigene Family/genetics , Polyketide Synthases/genetics , Streptomyces/genetics , Bioreactors/microbiology , Chromosomes, Artificial, Bacterial/genetics , Drug Combinations , Gene Library , Metabolomics , Polyketide Synthases/metabolism , Streptomyces/metabolism , Synthetic Biology
15.
Metab Eng ; 39: 228-236, 2017 01.
Article in English | MEDLINE | ID: mdl-28013086

ABSTRACT

Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted.


Subject(s)
Actinobacteria/physiology , Bacterial Proteins/metabolism , Biological Products/metabolism , Biosynthetic Pathways/physiology , Genetic Enhancement/methods , Metabolic Engineering/methods , Metabolic Networks and Pathways/physiology , Bacterial Proteins/genetics , Biological Products/isolation & purification , Metabolic Flux Analysis/methods , Models, Biological
16.
Synth Syst Biotechnol ; 1(1): 25-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-29062924

ABSTRACT

With the developments in metabolic engineering and the emergence of synthetic biology, many breakthroughs in medicinal, biological and chemical products as well as biofuels have been achieved in recent decades. As an important barrier to traditional metabolic engineering, however, the identification of rate-limiting step(s) for the improvement of specific cellular functions is often difficult. Meanwhile, in the case of synthetic biology, more and more BioBricks could be constructed for targeted purposes, but the optimized assembly or engineering of these components for high-efficiency cell factories is still a challenge. Owing to the lack of steady-state kinetic data for overall flux, balancing many multistep biosynthetic pathways is time-consuming and needs vast resources of labor and materials. A strategy called targeted engineering is proposed in an effort to solve this problem. Briefly, a targeted biosynthetic pathway is to be reconstituted in vitro and then the contribution of cofactors, substrates and each enzyme will be analyzed systematically. Next is in vivo engineering or de novo pathway assembly with the guidance of information gained from in vitro assays. To demonstrate its practical application, biosynthesis pathways for the production of important products, e.g. chemicals, nutraceuticals and drug precursors, have been engineered in Escherichia coli and Saccharomyces cerevisiae. These cases can be regarded as concept proofs indicating targeted engineering might help to create high-efficiency cell factories based upon constructed biological components.

17.
Metab Eng ; 28: 74-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25527439

ABSTRACT

Paired homologs of γ-butyrolactone (GBL) biosynthesis gene afsA and GBL receptor gene arpA are located at different positions in genome of Streptomyces hygroscopicus 5008. Inactivation of afsA homologs dramatically decreased biosynthesis of validamycin, an important anti-fungal antibiotic and a critical substrate for antidiabetic drug synthesis, and the deletion of arpA homologs increased validamycin production by 26% (ΔshbR1) and 20% (ΔshbR3). By double deletion, the ΔshbR1/R3 mutant showed higher transcriptional levels of adpA-H (the S. hygroscopicus ortholog of the global regulatory gene adpA) and validamycin biosynthetic genes, and validamycin production increased by 55%. Furthermore, by engineering a high-producing industrial strain via tandem deletion of GBL receptor genes, validamycin production and productivity were enhanced from 19 to 24 g/L (by 26%) and from 6.7 to 9.7 g/L(-1) d(-1) (by 45%), respectively, which was the highest ever reported. The strategy demonstrated here may be useful to engineering other Streptomyces spp. with multiple pairs of afsA-arpA homologs.


Subject(s)
Antifungal Agents/metabolism , Bacterial Proteins/genetics , Gene Deletion , Inositol/analogs & derivatives , Receptors, GABA-A/genetics , Streptomyces , Genes, Bacterial , Inositol/biosynthesis , Inositol/genetics , Streptomyces/genetics , Streptomyces/metabolism
18.
F1000Res ; 42015.
Article in English | MEDLINE | ID: mdl-26989472

ABSTRACT

With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

19.
Biotechnol Bioeng ; 110(11): 2984-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23703669

ABSTRACT

γ-Butyrolactones (GBLs), such as A-factor, are one type of signaling molecules produced by Streptomyces species and have been reported to regulate secondary metabolism. However, they are usually produced in very small amount, which has hindered their structural elucidation and application for antibiotic overproduction. In this work, 1,4-butyrolactone (1,4-BL), as an easily accessible and cheap analogue of GBLs, was applied to the fermentation of validamycin A (VAL-A), an important antifungal antibiotic produced by Streptomyces hygroscopicus 5008. The addition of 1,4-BL enhanced VAL-A production by 30% in both shaking flasks and bioreactors. The transcriptional levels of the adpA homologue (adpA-H) and VAL-A biosynthetic genes were significantly increased. Among the three A-factor receptor homologous genes identified in the genome of S. hygroscopicus 5008, shbR3 was proved to be responsible for the inducing activity of 1,4-BL by gene disruption and circular dichroism analysis, and ShbR3 could bind to the promoter region of adpA-H as indicated by EMSA analysis. Furthermore, the mutation of adpA-H abolished the transcription of VAL-A biosynthetic genes and VAL-A productivity. In EMSA analysis, AdpA-H could directly bind to the promoter regions of VAL-A gene cluster. Moreover, addition of the 1,4-BL also improved the VAL-A production in a high-yielding strain TL01. The results showed that 1,4-BL could stimulate A-factor-like cascade and subsequently enhance VAL-A production in S. hygroscopicus 5008.


Subject(s)
4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Inositol/analogs & derivatives , Streptomyces/drug effects , Streptomyces/metabolism , Antifungal Agents/metabolism , Biosynthetic Pathways/genetics , Circular Dichroism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Fermentation , Gene Expression Profiling , Gene Knockout Techniques , Inositol/biosynthesis , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Article in English | MEDLINE | ID: mdl-19883793

ABSTRACT

In order to investigate the effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, production of reactive oxygen species (ROS) and lipid peroxidation in broiler chickens, 128 six-week-old broiler chickens were kept in a controlled-environment chamber. The broiler chickens were initially kept at 25 degrees C (relative humidity, RH, 70+/-5%) for 6d and subsequently exposed to 35 degrees C (RH, 70+/-5%) for 3h, then the heat stress was removed and the temperature returned to 25 degrees C (RH, 70+/-5%). Blood and liver samples were obtained before heat exposure and at 0 (at the end of the three-hour heating episode, this group is also abbreviated as the HT group), 1, 2, 4, 8, 12h after the stress was removed. The results showed that acute heat stress induced a significant production of ROS, function of the mitochondrial respiratory chain, antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px)] activity, and formation of malondialdehybe (MDA). Within the first 12h after removal of the heat stress, the acute modification of the above parameters induced by heat stress gradually approached to pre-heat levels. The results of the present study suggest that acute exposure to high temperatures may depress the activity of the mitochondrial respiratory chain. This leads to over-production of ROS, which ultimately results in lipid peroxidation and oxidative stress. When the high temperature was removed, the production of ROS, mitochondrial respiratory function and oxidative injury that were induced by acute heat exposure gradually approached the levels observed before heating, in a time-dependent manner.


Subject(s)
Chickens/metabolism , Hot Temperature , Lipid Peroxidation/physiology , Mitochondria, Liver/metabolism , Reactive Oxygen Species/metabolism , Analysis of Variance , Animals , Catalase/metabolism , Cell Respiration/physiology , Glutathione Peroxidase/metabolism , Male , Stress, Physiological/physiology , Superoxide Dismutase/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...