Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(32): 4750-4753, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36970999

ABSTRACT

Theoretical calculation results unveil that the reconstructed Co(Ni)OOH on FeNiCo-MOF during OER processes is beneficial to improve the OER activity. Experimentally, to achieve 2D trimetallic FeNiCo-MOF nanosheets, a facile room-temperature dispersion approach is employed. Such 2D nanosheets reveal an OER overpotential as low as 239 mV at 10 mA cm-2 and excellent long-term stability in 1M KOH. Undoubtedly, this work highlights the great potential of directly utilizing MOF nanosheets as OER electrocatalysts.

2.
Inorg Chem ; 61(30): 11866-11878, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35857312

ABSTRACT

Two isomorphic lanthanide compounds {[Ln(ddpp)(H2O)]·CH3CN}n (Ln = Eu and Gd, H4ddpp = 2,5-di(2',4'-dicarboxylphenyl)pyridine) were synthesized. Complex 1-Eu displays ultrahigh acid-base stability and thermal stability. Furthermore, luminescence measurements revealed that 1-Eu could detect quinolone antibiotics with an ultralow limit of detection in aqueous solution. The ratiometric probe properties for sensing antibiotics could be attributed to the incompletely sensitized Eu3+ ion of the ligand. Remarkably, it is interesting that 1-Gd exhibits excellent tetracycline degradation properties under visible light. Ultraviolet-visible diffuse reflectance spectroscopy and valence band X-ray photoelectron spectroscopy were carried out to investigate the photodegradation mechanisms. Moreover, a rational explanation for the fluorescent probe and photocatalysis behavior of these two complexes was also discussed with the assistance of density functional theory calculations.


Subject(s)
Lanthanoid Series Elements , Metal-Organic Frameworks , Anti-Bacterial Agents , Lanthanoid Series Elements/chemistry , Ligands , Luminescent Measurements/methods
3.
Front Chem ; 10: 860232, 2022.
Article in English | MEDLINE | ID: mdl-35295970

ABSTRACT

Luminescent metal-organic frameworks (LMOFs) have been widely developed in the field of chemical sensing owing to their outstanding photoluminescence performance, high selectivity, anti-interference, high sensitivity, and fast response, and have become one of the research hotspots of emerging functional materials. However, in practical applications, many tests are carried out in the water environment, and fragile water stability greatly limits the application of MOFs in the field. Therefore, it is important to develop a method to enhance the water stability of MOFs. Herein, a new complex {[Zn(L)]·CH3CN} n (Zn-MOF, H2L = 5-(benzimidazol-1-yl) isophthalic acid) with a superior photophysical property has been synthesized first. Its water stability was highly enhanced by the doping of CuII ions by the one-pot method. In addition, the detection performances of doping material Cu0.1/Zn-MOF for sixteen metal ions and thirteen antibiotics were well studied. It was found that Cu0.1/Zn-MOF displays high sensitivity, fast response, lower detection limit, and long-term stability for the detection of Fe3+, NFT, NFZ, FZD, and TC in the aqueous medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...