Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 163414, 2014.
Article in English | MEDLINE | ID: mdl-25197694

ABSTRACT

This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 µm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2).


Subject(s)
Computer Storage Devices , Equipment Design/methods , Semiconductors , Signal Processing, Computer-Assisted/instrumentation , Wireless Technology/instrumentation
2.
ScientificWorldJournal ; 2014: 683971, 2014.
Article in English | MEDLINE | ID: mdl-25133252

ABSTRACT

A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.


Subject(s)
Electronics/instrumentation , Radio/instrumentation , Electronics/methods
3.
ScientificWorldJournal ; 2014: 923893, 2014.
Article in English | MEDLINE | ID: mdl-25133266

ABSTRACT

This work presents the design of a low power upconversion mixer adapted in medical remote sensing such as wireless endoscopy application. The proposed upconversion mixer operates in ISM band of 433 MHz. With the carrier power of -5 dBm, the proposed mixer has an output inferred 1 dB compression point of -0.5 dBm with a corresponding output third-order intercept point (OIP3) of 7.1 dBm. The design of the upconversion mixer is realized on CMOS 0.13 µm platform, with a current consumption of 594 µA at supply voltage headroom of 1.2 V.


Subject(s)
Diagnostic Equipment , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...