Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
J Biomater Appl ; 37(10): 1758-1766, 2023 05.
Article in English | MEDLINE | ID: mdl-36971120

ABSTRACT

Three-dimensional (3D)-printed scaffolds are a new strategy to fabricate biomaterials for treating bone defects. Here, using a 3D-printing technique, we fabricated scaffolds consisting of gelatin (Gel), sodium alginate (SA), and 58S bioactive glass (58S BG). To evaluate mechanical properties and biocompatibility of Gel/SA/58S BG scaffolds, the degradation test, compressive strength test, and cytotoxicity test were performed. The effect of the scaffolds on cell proliferation in vitro was determined by 4',6-diamidino-2-phenylindole (DAPI) staining. To evaluate osteoinductive properties, rBMSCs were cultured on the scaffolds for 7, 14, and 21 days and the expression of osteogenesis-related genes was analyzed using qRT-PCR. To examine the bone healing properties of Gel/SA/58S BG scaffolds in vivo, we used a rat mandibular critical-size defect bone model. The scaffolds were implanted into the defect area of rat mandible and bone regeneration and new tissue formation were assessed using microcomputed tomography (microCT) and hematoxylin and eosin (H&E) staining. The results showed that Gel/SA/58S BG scaffolds had appropriate mechanical strength as a filling material for bone defects. Furthermore, the scaffolds could be compressed within certain limits and then could recover their shape. The extract of the Gel/SA/58S BG scaffold showed no cytotoxicity. In vitro, the expression levels of Bmp2, Runx2, and OCN were increased in rBMSCs cultured on the scaffolds. In vivo, microCT and H&E staining demonstrated that scaffolds induced the formation of new bone at the mandibular defect area. These results indicated that Gel/SA/58S BG scaffolds have excellent mechanical characteristics, biocompatibility, and osteoinductive properties, suggesting that it could be a promising biomaterial for the repair of bone defects.


Subject(s)
Osteogenesis , Tissue Scaffolds , Rats , Animals , Gelatin , Alginates , X-Ray Microtomography , Biocompatible Materials , Bone Regeneration , Glass , Printing, Three-Dimensional , Tissue Engineering/methods
2.
Front Bioeng Biotechnol ; 10: 973886, 2022.
Article in English | MEDLINE | ID: mdl-36061449

ABSTRACT

Employing scaffolds containing cell-derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM-loaded scaffolds (RAOECs-ECM scaffold and RBMSCs-ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT-PCR). In vivo, full-thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague-Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro-CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM-loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel-like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM-loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs-ECM scaffold and RBMSCs-ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-873601

ABSTRACT

@#In recent years, pulp regeneration has become a research hotspot in the field of stomatology. 3D printing can realize precise control of structure and shape of scaffolds, which provide basis for seed cell adhesion and growth factor release. The 3D printing "pulp complexes" constructed by 3D printing scaffolds for tissue engineering provides a new direction for pulp regeneration research. This paper reviews the applications of 3D printing technology in pulp regeneration. The results of literature review showed that the scaffold materials, seed cells and growth factors in the 3D printing "pulp complexes" all play an important role in the pulp regeneration research. Among them, the scaffold materials act as carriers to load seed cells and growth factors and provide a suitable microenvironment for them. The common seed cells such as dental pulp stem cells, stem cells from apical papilla and stem cells from the human pulp of exfoliated deciduous teeth can provide the cellular basis for pulp regeneration. Moreover, the introduction of growth factors can further support the differentiation of pulp tissue and the reconstruction of pulp vessels and promote pulp regeneration. At present, the 3D printing "pulp complexes" in the study of dental pulp regeneration has made some progress and can induce the formation of pulp-like tissues in the laboratory. However, preparing 3D-printing "pulp complex" with good biological activity, which integrates biomimetic blood vessels and nerves to supply oxygen and nutrients to the cells in the root canal, remains a huge challenge and still needs further exploration and research.

SELECTION OF CITATIONS
SEARCH DETAIL