Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1359236, 2024.
Article in English | MEDLINE | ID: mdl-38742190

ABSTRACT

Background: Previous study suggested evidence for coexistence and similarities between endometriosis and polycystic ovary syndrome (PCOS), but it is unclear regarding the shared genetic architecture and causality underlying the phenotypic similarities observed for endometriosis and PCOS. Methods: By leveraging summary statistics from public genome-wide association studies regarding endometriosis (European-based: N=470,866) and PCOS (European-based: N=210,870), we explored the genetic correlation that shared between endometriosis and PCOS using linkage disequilibrium score regression. Shared risk SNPs were derived using PLACO (Pleiotropic analysis under composite null hypothesis) and FUMA (Functional Mapping and Annotation of Genetic Associations). The potential causal association between endometriosis and PCOS was investigated using two-sample Mendelian randomization (MR). Linkage disequilibrium score for the specific expression of genes analysis (LDSC-SEG) were performed for tissue enrichment analysis. The expression profiles of the risk gene in tissues were further examined. Results: A positive genetic association was observed between endometriosis and PCOS. 12 significant pleiotropic loci shared between endometriosis and PCOS were identified. Genetic associations between endometriosis and PCOS were particularly enriched in uterus, endometrium and fallopian tube. Two-sample MR analysis further indicated a potential causative effect of endometriosis on PCOS, and vice versa. Microarray and RNA-seq verified the expressions of SYNE1 and DNM3 were significantly altered in the endometrium of patients with endometriosis or PCOS compared to those of control subjects. Conclusion: Our study indicates the genetic correlation and shared risk genes between PCOS and endometriosis. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics.


Subject(s)
Endometriosis , Genetic Predisposition to Disease , Genome-Wide Association Study , Polycystic Ovary Syndrome , Polymorphism, Single Nucleotide , Humans , Polycystic Ovary Syndrome/genetics , Endometriosis/genetics , Female , Linkage Disequilibrium , Mendelian Randomization Analysis
2.
J Ovarian Res ; 17(1): 32, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310280

ABSTRACT

BACKGROUND: The etiology of premature ovarian insufficiency, that is, the loss of ovarian activity before 40 years of age, is complex. Studies suggest that genetic factors are involved in 20-25% of cases. The aim of this study was to explore the oligogenic basis of premature ovarian insufficiency. RESULTS: Whole-exome sequencing of 93 patients with POI and whole-genome sequencing of 465 controls were performed. In the gene-burden analysis, multiple genetic variants, including those associated with DNA damage repair and meiosis, were more common in participants with premature ovarian insufficiency than in controls. The ORVAL-platform analysis confirmed the pathogenicity of the RAD52 and MSH6 combination. CONCLUSIONS: The results of this study indicate that oligogenic inheritance is an important cause of premature ovarian insufficiency and provide insights into the biological mechanisms underlying premature ovarian insufficiency.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/genetics , Menopause, Premature/genetics
3.
Prenat Diagn ; 44(2): 167-171, 2024 02.
Article in English | MEDLINE | ID: mdl-37749763

ABSTRACT

OBJECTIVE: To elucidate an etiology in a case with persistent oligohydramnios by prenatal diagnosis and actively treat the case to achieve good prognosis. METHODS: We performed whole exome sequencing (WES) of DNA from the fetus and parents. Serial amnioinfusions were conducted until birth. Pressors were required to maintain normal blood pressure. The infant angiotensin-converting enzyme (ACE) activity, angiotensin II (Ang II, a downstream product of ACE), and compensatory enzymes (CEs) activities were measured. Compensatory enzyme activities in plasma from age-matched healthy controls were also detected. RESULTS: We identified a fetus with a severe ACE mutation prenatally. The infant was born prematurely without pulmonary dysplasia. Hypotension and anuria resolved spontaneously. He had almost no ACE activity, but his Ang II level and CE activity exceeded the upper limit of the normal range and the upper limit of the 95% confidence interval of controls, respectively. His renal function also largely recovered. CONCLUSION: Fetuses with ACE mutations can be diagnosed prenatally through WES. Serial amnioinfusion permits the continuation of pregnancy in fetal ACE deficiency. Compensatory enzymes for defective ACE appeared postnatally. Renal function may be spared by preterm delivery; furthermore, for postnatal vasopressor therapy to begin, improving renal perfusion pressure before nephrogenesis has been completed.


Subject(s)
Oligohydramnios , Peptidyl-Dipeptidase A , Pregnancy , Infant, Newborn , Male , Female , Humans , Peptidyl-Dipeptidase A/genetics , Prenatal Diagnosis , Fetus , Oligohydramnios/diagnostic imaging , Oligohydramnios/therapy , Delivery, Obstetric
4.
Front Endocrinol (Lausanne) ; 14: 1285667, 2023.
Article in English | MEDLINE | ID: mdl-38149096

ABSTRACT

Introduction: The number of primordial follicles (PFs) in mammals determines the ovarian reserve, and impairment of primordial follicle formation (PFF) will cause premature ovarian insufficiency (POI). Methods: By analyzing public single-cell RNA sequencing performed during PFF on mice and human ovaries, we identified novel functional genes and novel ligand-receptor interaction during PFF. Based on immunofluorescence and in vitro ovarian culture, we confirmed mechanisms of genes and ligand-receptor interaction in PFF. We also applied whole exome sequencing (WES) in 93 cases with POI and whole genome sequencing (WGS) in 465 controls. Variants in POI patients were further investigated by in silico analysis and functional verification. Results: We revealed ANXA7 (annexin A7) and GTF2F1 (general transcription factor IIF subunit 1) in germ cells to be novel potentially genes in promoting PFF. Ligand Mdk (midkine) in germ cells and its receptor Sdc1 (syndecan 1) in granulosa cells are novel interaction crucial for PFF. Based on immunofluorescence, we confirmed significant up-regulation of ANXA7 in PFs compared with germline cysts, and uniform expression of GTF2F1, MDK and SDC1 during PFF, in 25 weeks human fetal ovary. In vitro investigation indicated that Anxa7 and Gtf2f1 are vital for mice PFF by regulating Jak/Stat3 and Jnk signaling pathways, respectively. Ligand-receptor (Mdk-Sdc1) are crucial for PFF by regulating Pi3k-akt signaling pathway. Two heterozygous variants in GTF2F1, and one heterozygous variants in SDC1 were identified in cases, but no variant were identified in controls. The protein level of GTF2F1 or SDC1 in POI cases are significantly lower than that of controls, indicating the pathogenic effects of the two genes on ovarian function were dosage dependent. Discussion: Our study identified novel genes and novel ligand-receptor interaction during PFF, and further expanding the genetic architecture of POI.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Female , Humans , Animals , Mice , Exome Sequencing , Phosphatidylinositol 3-Kinases/metabolism , Ligands , Single-Cell Gene Expression Analysis , Ovarian Follicle/metabolism , Primary Ovarian Insufficiency/genetics , Mammals/genetics
5.
Cell Cycle ; 22(21-22): 2436-2448, 2023 11.
Article in English | MEDLINE | ID: mdl-38146657

ABSTRACT

Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further in vitro investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3ß (GSK-3ß), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3ß signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.


Subject(s)
Endometriosis , Proto-Oncogene Proteins c-akt , Female , Humans , Cell Adhesion Molecules , Cell Line, Tumor , Cell Movement , Endometriosis/genetics , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta , Phosphoprotein Phosphatases/pharmacology , Phosphoric Monoester Hydrolases , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
6.
BMC Med Genomics ; 16(1): 233, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798664

ABSTRACT

BACKGROUND: Intellectual disability (ID) is characterized by an IQ < 70, which implies below-average intellectual function and a lack of skills necessary for daily living. ID may occur due to multiple causes, such as metabolic, infectious, and chromosomal causes. ID affects approximately 1-3% of the population; however, the cause can be identified in only 25% of clinical patients. METHODS: To find the cause of genetic ID in a family, we performed whole-exome sequencing and Sanger sequencing to confirm the presence of a SETBP1 variant and real-time quantitative polymerase chain reaction to detect SETBP1 expression in the proband and normal controls. RESULTS: A novel variant, c.942_943insGT (p. Asp316TrpfsTer28), was found in SETBP1. Furthermore, we observed that SETBP1 expression in patients was only 20% that of normal controls (P < 0.05). CONCLUSION: A heterozygous variant in SETBP1 associated with ID was found. This report provides further evidence for its genetic basis and support for clinical genetic diagnosis.


Subject(s)
Intellectual Disability , Humans , Intellectual Disability/genetics , East Asian People , Family , Asian People/genetics , Pedigree , Mutation , Carrier Proteins/genetics , Nuclear Proteins/genetics
7.
Front Microbiol ; 14: 1117905, 2023.
Article in English | MEDLINE | ID: mdl-37228368

ABSTRACT

Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.

8.
Article in English | MEDLINE | ID: mdl-35886713

ABSTRACT

Sarcopenia is characterized by progressive loss of muscle mass and function, and it is becoming a serious public health problem with the aging population. However, a comprehensive overview of the knowledge base and future trends is still lacking. The articles and reviews with "sarcopenia" in their title published from 1999 to 2021 in the SCIE database were retrieved. We used Microsoft Excel, VOSviewer, and CiteSpace to conduct a descriptive and bibliometric analysis. A total of 3582 publications were collected, from 4 published in 2000 increasing dramatically to 850 documents in 2021. The USA was the most productive country, with the most citations. The Catholic University of the Sacred Heart and Landi F were the most influential organization and author in this field, respectively. The core journal in this field was the Journal of Cachexia Sarcopenia and Muscle. According to the analysis of keywords and references, we roughly categorized the main research areas into four domains as follows: 1. Definition and diagnosis; 2. Epidemiology; 3. Etiology and pathogenesis; 4. Treatments. Comparing different diagnostic tools and the epidemiology of sarcopenia in different populations are recent hotspots, while more efforts are needed in the underlying mechanism and developing safe and effective treatments. In conclusion, this study provides comprehensive insights into developments and trends in sarcopenia research that can help researchers and clinicians better manage and implement their work.


Subject(s)
Bibliometrics , Publications , Efficiency , Forecasting , Knowledge Bases
9.
J Ovarian Res ; 15(1): 31, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35227295

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. RESULTS: The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. CONCLUSION: This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


Subject(s)
Formins/genetics , Formins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Primary Ovarian Insufficiency/genetics , Adult , DNA Repair/genetics , Female , Fetus/metabolism , Heterozygote , Histones/blood , Humans , Lymphocytes/metabolism , Molecular Structure , Mutation, Missense , Ovary/metabolism , Pedigree , Primary Ovarian Insufficiency/blood , Exome Sequencing
10.
Biol Reprod ; 104(6): 1262-1270, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33624742

ABSTRACT

The zona pellucida (ZP) plays vital roles in reproductive processes including oogenesis, fertilization, and preimplantation development. Both human and rat ZP consist of four glycoproteins, called ZP1, ZP2, ZP3, and ZP4. Our previous research reported a novel Zp1 mutation in cases of human infertility, associated with an abnormal phenotype involving the absence of the ZP. Here, we developed a homologous rat strain to investigate the pathogenic effect. The ovaries of homozygous (Zp1MT/MT) females possessed both growing and fully grown oocytes; the oocytes completely lacked a ZP, but ZP1 was detectable inside the cytoplasm. Only 1-2 eggs were recovered from oviducts of superovulated Zp1MT/MT females, while an average of 21 eggs were recovered from superovulated Zp1WT/WT per female. The eggs of Zp1MT/MT females were not surrounded by a ZP and lost their fertilization capacity in vitro. Zp1MT/MT females mated with wild-type males failed to become pregnant. Studies in 293T cells showed that mutant Zp1 resulted in a truncated ZP1 protein, which might be intracellularly sequestered and interacted with wild-type ZP3 or ZP4. Our results suggest that the Zp1 point mutation led to infertility and loss of the ZP in oocytes in rats.


Subject(s)
Infertility, Female/genetics , Ovary/physiopathology , Zona Pellucida Glycoproteins/genetics , Zona Pellucida/metabolism , Animals , Female , Rats , Zona Pellucida Glycoproteins/metabolism
11.
J Assist Reprod Genet ; 37(2): 443-450, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31902100

ABSTRACT

PURPOSE: This study sought to identify a disease-related gene in a consanguineous Chinese family in which there were two premature ovarian insufficiency (POI) sisters. METHOD: We used whole-exome sequencing and Sanger sequencing to identify the disease-causing gene. Results were verified using an assay of mutant protein and in silico analyses. RESULT: We identified a novel missense mutation (NM_000303: c.556G>A, p.Gly186Arg) in the PMM2 gene. The two sisters suffer from premature ovarian insufficiency (POI) only and have no other symptoms of congenital disorder of glycosylation type-1a (CDG-Ia). We found that the enzymic activity of the mutant PMM2 protein was reduced by 55.21% (p < 0.05) when compared with wild type, and many in silico tools suggested the mutation is disease-related. CONCLUSION: This particular gene modification results in changes in activity of phosphomannomutase modification, which could lead to PMM2-CDG-Ia with an uncommon phenotype.


Subject(s)
Genetic Predisposition to Disease , Phosphotransferases (Phosphomutases)/genetics , Primary Ovarian Insufficiency/genetics , Adult , China , Consanguinity , Female , Humans , Mutation, Missense/genetics , Pedigree , Phenotype , Primary Ovarian Insufficiency/physiopathology , Siblings
12.
Biol Reprod ; 101(2): 457-465, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31162612

ABSTRACT

Zona pellucida (ZP), which enwraps the oocyte during folliculogenesis, initially forms in the primary follicle and plays an important role in female fertility. Here, we investigated a mouse strain ("mutant mice" for short) carrying two types of ZP defects in folliculogenesis, i.e., ZP thinned (but intact) and ZP cracked, caused by targeted mutation in the Zp1 gene. Using this mutant mouse strain and wild-type mouse as control, we studied the effects of the ZP defects on the development of oocytes and granulosa cells during folliculogenesis. For each ZP defect, we examined the morphology of transzonal projections and apoptosis of granulosa cells in the corresponding growing follicles, as well as the morphology of corresponding ovulated eggs and their abilities to develop into viable individuals. Our results suggested that ZP integrity rather than thickness or porosity is crucial for preventing the ectopia of granulosa cells, maintaining adequate routine bilateral signaling between oocyte and surrounding granulosa cells, and thus for ensuring the survival of granulosa cells and the establishment of the full developmental competence of oocytes. This is the first study to elucidate the effects of different degrees of ZP defects caused by the same gene mutation, on the apoptosis of granulosa cells and developmental competence of oocytes, and to explore the potential mechanisms underlying these effects.


Subject(s)
Apoptosis/physiology , Granulosa Cells/physiology , Oocytes/growth & development , Zona Pellucida Glycoproteins/metabolism , Zona Pellucida/pathology , Amino Acid Sequence , Animals , Female , Gene Expression Regulation , Mice , Mutation , Zona Pellucida Glycoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...