Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters










Publication year range
1.
Nat Mater ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769205

ABSTRACT

Solid-state spin-photon interfaces that combine single-photon generation and long-lived spin coherence with scalable device integration-ideally under ambient conditions-hold great promise for the implementation of quantum networks and sensors. Despite rapid progress reported across several candidate systems, those possessing quantum coherent single spins at room temperature remain extremely rare. Here we report quantum coherent control under ambient conditions of a single-photon-emitting defect spin in a layered van der Waals material, namely, hexagonal boron nitride. We identify that the carbon-related defect has a spin-triplet electronic ground-state manifold. We demonstrate that the spin coherence is predominantly governed by coupling to only a few proximal nuclei and is prolonged by decoupling protocols. Our results serve to introduce a new platform to realize a room-temperature spin qubit coupled to a multiqubit quantum register or quantum sensor with nanoscale sample proximity.

2.
Adv Sci (Weinh) ; 11(19): e2309481, 2024 May.
Article in English | MEDLINE | ID: mdl-38477429

ABSTRACT

Diabetic ketoacidosis (DKA) is a life-threatening acute complication of diabetes characterized by the accumulation of ketone bodies in the blood. Breath acetone, a ketone, directly correlates with blood ketones. Therefore, monitoring breath acetone can significantly enhance the safety and efficacy of diabetes care. In this work, the design and fabrication of an InP/Pt/chitosan nanowire array-based chemiresistive acetone sensor is reported. By incorporation of chitosan as a surface-functional layer and a Pt Schottky contact for efficient charge transfer processes and photovoltaic effect, self-powered, highly selective acetone sensing is achieved. The sensor has exhibited an ultra-wide acetone detection range from sub-ppb to >100 000 ppm level at room temperature, covering those in the exhaled breath from healthy individuals (300-800 ppb) to people at high risk of DKA (>75 ppm). The nanowire sensor has also been successfully integrated into a handheld breath testing prototype, the Ketowhistle, which can successfully detect different ranges of acetone concentrations in simulated breath samples. The Ketowhistle demonstrates the immediate potential for non-invasive ketone monitoring for people living with diabetes, in particular for DKA prevention.


Subject(s)
Acetone , Breath Tests , Nanowires , Acetone/analysis , Humans , Breath Tests/methods , Breath Tests/instrumentation , Diabetic Ketoacidosis/diagnosis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Chitosan/chemistry , Equipment Design , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood
3.
Nat Commun ; 15(1): 2281, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480721

ABSTRACT

Solid state single-photon sources with high brightness and long coherence time are promising qubit candidates for modern quantum technology. To prevent decoherence processes and preserve the integrity of the qubits, decoupling the emitters from their surrounding environment is essential. To this end, interfacing single photon emitters (SPEs) with high-finesse cavities is required, especially in the strong coupling regime, when the interaction between emitters can be mediated by cavity fields. However, achieving strong coupling at elevated temperatures is challenging due to competing incoherent processes. Here, we address this long-standing problem by using a quantum system, which comprises a class of SPEs in hexagonal boron nitride and a dielectric cavity based on bound states in the continuum (BIC). We experimentally demonstrate, at room temperature, strong coupling of the system with a large Rabi splitting of ~4 meV thanks to the combination of the narrow linewidth and large oscillator strength of the emitters and the efficient photon trapping of the BIC cavity. Our findings unveil opportunities to advance the fundamental understanding of quantum dynamical system in strong coupling regime and to realise scalable quantum devices capable of operating at room temperature.

4.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315082

ABSTRACT

High-quality quantum light sources are crucial components for the implementation of practical and reliable quantum technologies. The persistent challenge, however, is the lack of scalable and deterministic single photon sources that can be synthesized reproducibly. Here, we present a combination of droplet epitaxy with selective area epitaxy to realize the deterministic growth of single quantum dots in nanowire arrays. By optimization of the single quantum dot growth and the nanowire cavity design, single emissions are effectively coupled with the dominant mode of the nanowires to realize Purcell enhancement. The resonance-enhanced quantum emitter system boasts a brightness of millions of counts per second with nanowatt excitation power, a short radiation lifetime of 350 ± 5 ps, and a high single-photon purity with g(2)(0) value of 0.05 with continuous wave above-band excitation. Finite-difference time-domain (FDTD) simulation results show that the emissions of single quantum dots are coupled into the TM01 mode of the nanowires, giving a Purcell factor ≈ 3. Our technology can be used for creating on-chip scalable single photon sources for future quantum technology applications including quantum networks, quantum computation, and quantum imaging.

5.
Small ; : e2307512, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342669

ABSTRACT

Second-harmonic generation (SHG) offers a convenient approach for infrared-to-visible light conversion in tunable nanoscale light sources and optical communication. Semiconductor nanostructures offer rich possibilities to tailor their nonlinear optical properties. In this study, strong second-harmonic generation in InP nanomembranes with InAsP quantum well (QW) is demonstrated. Compared with bulk InP, up to 100 times enhancement of SHG is achieved in the short-wave infrared range. This enhancement is shown to be predominantly induced by the resonance-enhanced absorption and quantum confinement of fundamental wavelengths in the InAsP QW. The thin nanomembrane structure will also provide nanocavity enhancement for second-harmonic wavelengths. The enhanced SHG peak wavelengths can also be tuned by changing the QW composition. These findings provide an effective strategy for enhancing and manipulating the second-harmonic generation in semiconductor quantum-confined nanostructures for on-chip all-optical applications.

6.
J Colloid Interface Sci ; 660: 934-942, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280286

ABSTRACT

Coupling TiO2 within N-doped porous carbon (NPC) is essential for enhancing its Na+ storage performance. However, the role of different N configurations in NPC in improving the electrochemical performance of TiO2 is currently unknown. In this study, melamine is deliberately incorporated as a pore-forming agent in the self-assembly process of metal organic framework precursors (NH2-MIL-125(Ti)). This intentional inclusion of melamine leads to the one-pot and in-situ formation of highly active edge-N, which is vital for the development of TiO2/NPC with exceptional reactivity. Electrochemical performance characterization and density functional theory (DFT) calculation indicate that the interaction between TiO2 and pyridinic-N enriched NPC can effectively narrow the bandgap of TiO2/NPC, thereby significantly improving electron/ion transfer. Additionally, the abundant mesoporous channels, high N content and oxygen vacancies also contribute to the fast reaction kinetics of TiO2/NPC. As a result, the optimized TiO2/NPC-M, with high proportion of pyridinic-N (44.1 %) and abundant mesoporous channels (97.8 %), delivers high specific capacity of 282.1 mA h-1 at 0.05 A g-1, superior rate capability of 177.3 mA h-1 at 10 A g-1, and prominent capacity retention of 89.3 % over 5000 cycles even under ultrahigh 10 A g-1. Furthermore, the TiO2/NPC-M//AC sodium ion capacitors (SIC) device achieves a high energy density of 136.7 Wh kg-1 at 200 W kg-1. This research not only offers fresh perspectives on the production of high-performance TiO2-based anodes, but also paves the way for customizing other active materials for energy storage and beyond.

7.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38237187

ABSTRACT

Single-photon detector (SPD), an essential building block of the quantum communication system, plays a fundamental role in developing next-generation quantum technologies. In this work, we propose an efficient modeling workflow of nanowire SPDs utilizing avalanche breakdown at reverse-biased conditions. The proposed workflow is explored to maximize computational efficiency and balance time-consuming drift-diffusion simulation with fast script-based post-processing. Without excessive computational effort, we could predict a suite of key device performance metrics, including breakdown voltage, dark/light avalanche built-up time, photon detection efficiency, dark count rate, and the deterministic part of timing jitter due to device structures. Implementing the proposed workflow onto a single InP nanowire and comparing it to the extensively studied planar devices and superconducting nanowire SPDs, we showed the great potential of nanowire avalanche SPD to outperform their planar counterparts and obtain as superior performance as superconducting nanowires, i.e. achieve a high photon detection efficiency of 70% with a dark count rate less than 20 Hz at non-cryogenic temperature. The proposed workflow is not limited to single-nanowire or nanowire-based device modeling and can be readily extended to more complicated two-/three dimensional structures.

8.
ACS Appl Mater Interfaces ; 15(38): 44912-44920, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712229

ABSTRACT

Solar energy conversion devices with charge-selective contacts are attracting significant research interest as a cost-effective alternative to homojunction counterparts. This study presents a novel approach for fabricating high-performance solar cells based on InP heterojunctions using a solution-processed ferri-hydrite (Fh) electron-selective contact (ESC). The champion cell efficiency of 16.6% is achieved, which is a significant improvement over those from previous studies using other solution-processed ESC materials. X-ray photoelectron spectroscopy measurements showed that the low conduction band offset at the Fh-InP interface facilitated selective transport of photogenerated electrons from InP. Moreover, the Fh electron-selective contact layer provided an excellent photoelectrochemical half-cell water reduction efficiency of 8.4%. The Fh layer not only selectively extracts photogenerated electrons from InP but also simultaneously serves as a surface protection layer, improving the cell's long-term stability. These results demonstrate the potential of Fh as a low-cost and easily fabricated material for use in high-efficiency photovoltaic and photoelectrochemical devices. Our findings pave the way for further improvements in the efficiency of InP heterojunction solar cells by addressing the losses incurred in the cells.

9.
Nanotechnology ; 34(49)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37625398

ABSTRACT

Large-area epitaxial growth of III-V nanowires and thin films on van der Waals substrates is key to developing flexible optoelectronic devices. In our study, large-area InAs nanowires and planar structures are grown on hexagonal boron nitride templates using metal organic chemical vapor deposition method without any catalyst or pre-treatments. The effect of basic growth parameters on nanowire yield and thin film morphology is investigated. Under optimised growth conditions, a high nanowire density of 2.1×109cm-2is achieved. A novel growth strategy to achieve uniform InAs thin film on h-BN/SiO2/Si substrate is introduced. The approach involves controlling the growth process to suppress the nucleation and growth of InAs nanowires, while promoting the radial growth of nano-islands formed on the h-BN surface. A uniform polycrystalline InAs thin film is thus obtained over a large area with a dominant zinc-blende phase. The film exhibits near-band-edge emission at room temperature and a relatively high Hall mobility of 399 cm-2/(Vs). This work suggests a promising path for the direct growth of large-area, low-temperature III-V thin films on van der Waals substrates.

10.
Nanotechnology ; 34(44)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37473744

ABSTRACT

In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2µm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.

11.
ACS Nano ; 17(15): 15065-15076, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37449797

ABSTRACT

Integrated, on-chip lasers are vital building blocks in future optoelectronic and nanophotonic circuitry. Specifically, III-V materials that are of technological relevance have attracted considerable attention. However, traditional microcavity laser fabrication techniques, including top-down etching and bottom-up catalytic growth, often result in undesirable cavity geometries with poor scalability and reproducibility. Here, we utilize the selective area epitaxy method to deterministically engineer thousands of microring lasers on a single chip. Specifically, we realize a catalyst-free, epitaxial growth of a technologically critical material, InAsP/InP, in a ring-like cavity with embedded multi-quantum-well heterostructures. We elucidate a detailed growth mechanism and leverage the capability to deterministically control the adatom diffusion lengths on selected crystal facets to reproducibly achieve ultrasmooth cavity sidewalls. The engineered devices exhibit a tunable emission wavelength in the telecommunication O-band and show low-threshold lasing with over 80% device efficacy across the chip. Our work marks a significant milestone toward the implementation of a fully integrated III-V materials platform for next-generation high-density integrated photonic and optoelectronic circuits.

12.
Nat Commun ; 14(1): 4459, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491528

ABSTRACT

Avalanche and surge robustness involve fundamental carrier dynamics under high electric field and current density. They are also prerequisites of any power device to survive common overvoltage and overcurrent stresses in power electronics applications such as electric vehicles, electricity grids, and renewable energy processing. Despite tremendous efforts to develop the next-generation power devices using emerging ultra-wide bandgap semiconductors, the lack of effective bipolar doping has been a daunting obstacle for achieving the necessary robustness in these devices. Here we report avalanche and surge robustness in a heterojunction formed between the ultra-wide bandgap n-type gallium oxide and the wide-bandgap p-type nickel oxide. Under 1500 V reverse bias, impact ionization initiates in gallium oxide, and the staggered band alignment favors efficient hole removal, enabling a high avalanche current over 50 A. Under forward bias, bipolar conductivity modulation enables the junction to survive over 50 A surge current. Moreover, the asymmetric carrier lifetime makes the high-level carrier injection dominant in nickel oxide, enabling a fast reverse recovery within 15 ns. This heterojunction breaks the fundamental trade-off between robustness and switching speed in conventional homojunctions and removes a key hurdle to advance ultra-wide bandgap semiconductor devices for power industrial applications.

13.
Nanoscale ; 15(23): 10033-10041, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37248736

ABSTRACT

Detection of short-wave infrared (SWIR) and mid-wave infrared (MWIR) emissions remains challenging despite their importance in many emerging applications, including night vision, space imaging and remote sensing. III-V compound semiconductor materials such as InAs have an ideal band gap covering a spectral regime from near-infrared (NIR), SWIR to MWIR. However, due to their high dark current, InAs photodetectors normally require a low-temperature operation, which has greatly limited their practical applications. Here, we report the engineering of InAs nanowire arrays to achieve efficient photodetection of light at wavelengths ranging from NIR to MWIR (3500 nm). By using selective area metal-organic vapour-phase epitaxy, we optimise the nanowire growth temperature and V/III ratio to achieve wurtzite (WZ)-based InAs nanowire arrays with a high WZ density of ∼67%. Due to the n-type background doping of the InAs nanowires and the p-type InAs substrate used for nanowire growth, a p-n junction is formed, and an ultrawide room-temperature photoresponse ranging from 500 to 3500 nm is obtained under zero bias. It is found that the waveguide modes supported by the InAs nanowires result in a high peak responsivity of 0.44 A W-1 and a detectivity of 1.25 × 1010 cm √Hz W-1 at a wavelength of 1600 nm, a bias voltage of only -0.1 V and a relatively high operating temperature of 150 K. Such a strong light trapping effect in the InAs nanowires also leads to significantly lower reflection compared to that observed in planar photodetectors, and thus strong absorption in the substrate extending the photoresponse up to the InAs bandgap edge of 3500 nm. Our work shows that through careful material optimisation and device design, InAs nanowire arrays are promising for the development of high-performance ultra-broadband infrared photodetectors for wavelengths ranging from NIR, SWIR to MWIR.


Subject(s)
Nanowires , Temperature , Cold Temperature , Gases
14.
Small ; 19(26): e2302295, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37194952

ABSTRACT

Although the electrocatalytic nitrate reduction reaction (NO3 - RR) is an attractive NH3 synthesis route, it suffers from low yield due to the lack of efficient catalysts. Here, this work reports a novel grain boundary (GB)-rich Sn-Cu catalyst, derived from in situ electroreduction of Sn-doped CuO nanoflower, for effectively electrochemical converting NO3 - to NH3 . The optimized Sn1% -Cu electrode achieves a high NH3 yield rate of 1.98 mmol h-1 cm-2 with an industrial-level current density of -425 mA cm-2 at -0.55 V versus a reversible hydrogen electrode (RHE) and a maximum Faradaic efficiency of 98.2% at -0.51 V versus RHE, outperforming the pure Cu electrode. In situ Raman and attenuated total reflection Fourier transform infrared spectroscopies reveal the reaction pathway of NO3 - RR to NH3 by monitoring the adsorption property of reaction intermediates. Density functional theory calculations clarify that the high-density GB active sites and the competitive hydrogen evolution reaction (HER) suppression induced by Sn doping synergistically promote highly active and selective NH3 synthesis from NO3 - RR. This work paves an avenue for efficient NH3 synthesis over Cu catalyst by in situ reconstruction of GB sites with heteroatom doping.

15.
Nano Lett ; 23(10): 4359-4366, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37155142

ABSTRACT

Surface plasmons have robust and strong confinement to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.

16.
ACS Nano ; 17(11): 10918-10924, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37191338

ABSTRACT

Due to the peculiar structured light field with spatially variant polarizations on the same wavefront, vector beams (VBs) have sparked research enthusiasm in developing advanced super-resolution imaging and optical communications techniques. A compact VB nanolaser is intriguing for VB applications in miniaturized photonic integrated circuits. However, determined by the diffraction limit of light, it is a challenge to realize a VB nanolaser in the subwavelength scale because the VB lasing modes should have laterally structured distributions. Here, we demonstrate a VB nanolaser made from a 300 nm thick InGaAs/GaAs nanowire (NW). To select the high-order VB lasing mode, a standing NW as-grown from the selective-area-epitaxial (SAE) growth process is utilized, which has a bottom donut-shaped interface with the silicon oxide growth substrate. With this donut-shaped interface as one of the reflective mirrors of the nanolaser cavity, the VB lasing mode has the lowest threshold. Experimentally, a single-mode VB lasing mode with a donut-shaped amplitude and azimuthally cylindrical polarization distribution is obtained. Together with the high yield and uniformity of the SAE-grown NWs, our work provides a straightforward and scalable path toward cost-effective co-integration of VB nanolasers on potential photonic integrated circuits.

17.
STAR Protoc ; 4(2): 102237, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37083321

ABSTRACT

Nanostructured III-V semiconductors are attractive for solar energy conversion applications owing to their excellent light harvesting and optoelectronic properties. Here, we present a protocol for scalable fabrication of III-V semiconductor nanopillars using a simple and cost-effective top-down approach, combining self-assembled random mask and plasma etching techniques. We describe the deposition of Au/SiO2 layers to prepare random etch mask. We then detail the fabrication of nanopillars and photocathodes. Finally, we demonstrate III-V semiconductor nanopillars as a photoelectrode for photoelectrochemical water splitting. For complete details on the use and execution of this protocol, please refer to Narangari et al. (2021).1.

18.
Nanoscale Horiz ; 8(4): 530-542, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36825590

ABSTRACT

GaN/AlGaN core-shell nanowires with various Al compositions have been grown on GaN nanowire array using selective area metal organic chemical vapor deposition technique. Growth of the AlGaN shell using pure N2 carrier gas resulted in a smooth surface for the nonpolar m-plane sidewalls with superior optical properties, whereas, growth using a mixed N2/H2 carrier gas resulted in a striated surface similar to the commonly observed morphology in the growth of nonpolar III-nitrides. The Al compositions in the AlGaN shells are found to be less than the gas phase input ratio. The systematic reduction in efficiency of Al incorporation in the AlGaN shells with increasing the Al molar flow in the gas phase is attributed to geometric loss, strain-limited Al incorporation, and increased gas phase parasitic reactions. Defect-related luminescence has been observed for AlGaN shells with Al content ≥ 30% and the origin of the defect luminescence has been determined as the (VIII-2ON)1- complex. Microstructural analysis of the AlGaN shells revealed that the dominant defects are partial dislocations. Growth of the nonpolar m-plane AlxGa1-xN/AlyGa1-yN quantum wells on the sidewalls of the GaN nanowires produced arrays with excellent morphology and optical emission, which demonstrated the viability of such a growth scheme for large area efficient ultraviolet LEDs as well as for next generation ultraviolet micro-LEDs.

19.
Light Sci Appl ; 12(1): 40, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36810847

ABSTRACT

In the last decades, metasurfaces have attracted much attention because of their extraordinary light-scattering properties. However, their inherently static geometry is an obstacle to many applications where dynamic tunability in their optical behaviour is required. Currently, there is a quest to enable dynamic tuning of metasurface properties, particularly with fast tuning rate, large modulation by small electrical signals, solid state and programmable across multiple pixels. Here, we demonstrate electrically tunable metasurfaces driven by thermo-optic effect and flash-heating in silicon. We show a 9-fold change in transmission by <5 V biasing voltage and the modulation rise-time of <625 µs. Our device consists of a silicon hole array metasurface encapsulated by transparent conducting oxide as a localised heater. It allows for video frame rate optical switching over multiple pixels that can be electrically programmed. Some of the advantages of the proposed tuning method compared with other methods are the possibility to apply it for modulation in the visible and near-infrared region, large modulation depth, working at transmission regime, exhibiting low optical loss, low input voltage requirement, and operating with higher than video-rate switching speed. The device is furthermore compatible with modern electronic display technologies and could be ideal for personal electronic devices such as flat displays, virtual reality holography and light detection and ranging, where fast, solid-state and transparent optical switches are required.

20.
ACS Appl Mater Interfaces ; 15(1): 1184-1191, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36594609

ABSTRACT

The efficient removal of epitaxially grown materials from their host substrate has a pivotal role in reducing the cost and material consumption of III-V solar cells and in making flexible thin-film devices. A multilayer epitaxial lift-off process is demonstrated that is scalable in both film size and in the number of released films. The process utilizes in-built, individually engineered epitaxial strain in each film to tailor the bending without the need for external layers to induce strain. Even without external support layers, the films retain good integrity after the lift-off, as evidenced by photoluminescence measurements. The films can be further processed into devices, demonstrated here with the fabrication of cm-scale solar cells using a three-layer lift-off process. Based on the included cost analysis, the solar cells are fabricated with a facile two-step process from the as-released films. The scalable multilayer lift-off process is highly cost-efficient and enables a 4-to-6-fold reduction in the cost with respect to the single-layer epitaxial lift-off process. The results are therefore significant for III-V photovoltaics and any other technologies that rely on thin-film III-V semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...