Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 147(1-3): 265-76, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19853381

ABSTRACT

Central neuropathic pain (CNP) developing after spinal cord injury (SCI) is described by the region affected: above-level, at-level and below-level pain occurs in dermatomes rostral, at/near, or below the SCI level, respectively. People with SCI and rodent models of SCI develop above-level pain characterized by mechanical allodynia and thermal hyperalgesia. Mechanisms underlying this pain are unknown and the goals of this study were to elucidate components contributing to the generation of above-level CNP. Following a thoracic (T10) contusion, forelimb nociceptors had enhanced spontaneous activity and were sensitized to mechanical and thermal stimulation of the forepaws 35 days post-injury. Cervical dorsal horn neurons showed enhanced responses to non-noxious and noxious mechanical stimulation as well as thermal stimulation of receptive fields. Immunostaining dorsal root ganglion (DRG) cells and cord segments with activating transcription factor 3 (ATF3, a marker for neuronal injury) ruled out neuronal damage as a cause for above-level sensitization since few C8 DRG cells expressed AFT3 and cervical cord segments had few to no ATF3-labeled cells. Finally, activated microglia and astrocytes were present in thoracic and cervical cord at 35 days post-SCI, indicating a rostral spread of glial activation from the injury site. Based on these data, we conclude that peripheral and central sensitization as well as reactive glia in the uninjured cervical cord contribute to CNP. We hypothesize that reactive glia in the cervical cord release pro-inflammatory substances which drive chronic CNP. Thus a complex cascade of events spanning many cord segments underlies above-level CNP.


Subject(s)
Neuralgia/etiology , Pain Threshold/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Spinal Cord/physiopathology , Action Potentials/physiology , Activating Transcription Factor 3/metabolism , Animals , Behavior, Animal , Cell Count/methods , Disease Models, Animal , Forelimb/physiopathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Hyperalgesia/physiopathology , In Vitro Techniques , Male , Nociceptors/pathology , Nociceptors/physiology , Physical Stimulation/methods , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/physiology , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Statistics, Nonparametric
2.
J Neurotrauma ; 23(7): 1111-24, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16866624

ABSTRACT

In this study, we investigated the role of the spinal GABAergic system in central neuropathic painlike outcomes following spinal cord injury (SCI) produced by a spinal hemitransection at T13 of the rat. After SCI, mechanical allodynia develops bilaterally in both hind paws of the rat, lasting longer than 40 days, as evidenced by an increase in paw withdrawal frequency in response to a weak von Frey filament. In naive rats, intrathecal (i.t.) administration in the lumbar spinal cord of GABAA and GABAB receptor antagonists, bicuculline (1-5 microg) and phaclofen (0.1-5 microg), respectively, causes a dose-dependent increase in the magnitude of mechanical allodynia. The SCI-induced mechanical allodynia in both hind-paws is attenuated by i.t. administration in the lumbar spinal cord of GABAA or GABAB receptor agonists, muscimol (1 microg) or baclofen (0.5 microg), respectively. In electrophysiological experiments, rats with SCI show a bilateral increase in hyperexcitability in response to natural stimuli in wide dynamic range (WDR) neurons in the lumbar spinal dorsal horn. The topical application of muscimol (1 microg) or baclofen (0.5 microg) onto the lumbar cord surface reduce the SCIinduced increased responsiveness of WDR neurons. Inhibitory effects of muscimol and baclofen on both the behavioral mechanical allodynia and the hyperexcitability in WDR neuron with SCI compared to controls, were antagonized by pre-treatment of bicuculline (10 microg) and phaclofen (5 microg), respectively. This study provides behavioral and electrophysiological evidence for the important role of the loss of spinal inhibitory tone, mediated by activation of both GABAA and GABAB receptors, in the development of central neuropathic pain following SCI.


Subject(s)
Pain/metabolism , Receptors, GABA/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , GABA Antagonists/pharmacology , Male , Pain/etiology , Pain/prevention & control , Pain Measurement/drug effects , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...