Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Lab Chip ; 22(10): 1980-1988, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35445222

ABSTRACT

The temperature dependence of the diffusiophoretic mobility (DDP) is investigated experimentally and compared with theoretical predictions. These systematic measurements were made possible by a new microfluidic approach that enables truly steady state gradients to be imposed, and direct and repeatable measurements of diffusiophoretic migration to be made over hours-long time scales. Diffusiophoretic mobilities were measured for fluorescent, negatively charged polystyrene particles under NaCl gradients, at temperatures ranging from 20 °C to 70 °C. Measured DDP values were found to increase monotonically with temperature, and to agree, both qualitatively and relatively quantitatively, with theoretical predictions based on electrophoretically-measured zeta potentials. These results provide confidence that existing diffusiophoresis theories can accurately predict DP mobilities over a range of temperatures. More broadly, we anticipate our new microfluidic approach will facilitate and enable new tests of diffusiophoretic phenomena under a wide range of physical and chemical conditions.


Subject(s)
Microfluidics , Sodium Chloride , Temperature
2.
Sci Adv ; 7(33)2021 Aug.
Article in English | MEDLINE | ID: mdl-34389540

ABSTRACT

The delivery of small particles into porous environments remains highly challenging because of the low permeability to the fluids that carry these colloids. Even more challenging is that the specific location of targets in the porous environment usually is not known and cannot be determined from the outside. Here, we demonstrate a two-step strategy to deliver suspended colloids to targets that are "hidden" within closed porous media. The first step serves to automatically convert any hidden targets into soluto-inertial "beacons," capable of sustaining long-lived solute outfluxes. The second step introduces the deliverable objects, which are designed to autonomously migrate against the solute fluxes emitted by the targets, thereby following chemical trails that lead to the target. Experimental and theoretical demonstrations of the strategy lay out the design elements required for the solute and the deliverable objects, suggesting routes to delivering colloidal objects to hidden targets in various environments and technologies.

3.
ACS Nano ; 15(3): 4256-4267, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33601887

ABSTRACT

Supraparticles are large clusters of much smaller colloidal particles. Controlling the shape and anisotropy of supraparticles can enhance their functionality, enabling applications in fields such as optics, magnetics, and medicine. The evaporation of self-lubricating colloidal ouzo droplets is an easy and efficient strategy to create supraparticles, overcoming the problem of the "coffee-stain effect" during drop evaporation. Yet, the parameters that control the shape of the supraparticles formed in such evaporating droplets are not fully understood. Here, we show that the size of the colloidal particles determines the shape of the supraparticle. We compared the shape of the supraparticles made of seven different sizes of spherical silica particles, namely from 20 to 1000 nm, and of the mixtures of small and large colloidal particles at different mixing ratios. Specifically, our in situ measurements revealed that the supraparticle formation proceeds via the formation of a flexible shell of colloidal particles at the rapidly moving interfaces of the evaporating droplet. The time tc0 when the shell ceases to shrink and loses its flexibility is closely related to the size of particles. A lower tc0, as observed for smaller colloidal particles, leads to a flat pancake-like supraparticle, in contrast to a more curved American football-like supraparticle from larger colloidal particles. Furthermore, using a mixture of large and small colloidal particles, we obtained supraparticles that display a spatial variation in particle distribution, with small colloids forming the outer surface of the supraparticle. Our findings provide a guideline for controlling the supraparticle shape and the spatial distribution of the colloidal particles in supraparticles by simply self-lubricating ternary drops filled with colloidal particles.

4.
Proc Natl Acad Sci U S A ; 118(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33419924

ABSTRACT

The gasification of multicomponent fuel drops is relevant in various energy-related technologies. An interesting phenomenon associated with this process is the self-induced explosion of the drop, producing a multitude of smaller secondary droplets, which promotes overall fuel atomization and, consequently, improves the combustion efficiency and reduces emissions of liquid-fueled engines. Here, we study a unique explosive gasification process of a tricomponent droplet consisting of water, ethanol, and oil ("ouzo"), by high-speed monitoring of the entire gasification event taking place in the well-controlled, levitated Leidenfrost state over a superheated plate. It is observed that the preferential evaporation of the most volatile component, ethanol, triggers nucleation of the oil microdroplets/nanodroplets in the remaining drop, which, consequently, becomes an opaque oil-in-water microemulsion. The tiny oil droplets subsequently coalesce into a large one, which, in turn, wraps around the remnant water. Because of the encapsulating oil layer, the droplet can no longer produce enough vapor for its levitation, and, thus, falls and contacts the superheated surface. The direct thermal contact leads to vapor bubble formation inside the drop and consequently drop explosion in the final stage.

5.
Nat Commun ; 10(1): 478, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696829

ABSTRACT

The assembly of colloidal particles from evaporating suspension drops is seen as a versatile route for the fabrication of supraparticles for various applications. However, drop contact line pining leads to uncontrolled shapes of the emerging supraparticles, hindering this technique. Here we report how the pinning problem can be overcome by self-lubrication. The colloidal particles are dispersed in ternary drops (water, ethanol, and anise-oil). As the ethanol evaporates, oil microdroplets form ('ouzo effect'). The oil microdroplets coalesce and form an oil ring at the contact line, levitating the evaporating colloidal drop ('self-lubrication'). Then the water evaporates, leaving behind a porous supraparticle, which easily detaches from the surface. The dispersed oil microdroplets act as templates, leading to multi-scale, fractal-like structures inside the supraparticle. Employing this method, we could produce a large number of supraparticles with tunable shapes and high porosity on hydrophobic surfaces.

6.
Langmuir ; 34(36): 10659-10667, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30102544

ABSTRACT

The formation and evolution of immersed surface micro- and nanobubbles are essential in various practical applications, such as the usage of superhydrophobic materials, drug delivery, and mineral flotation. In this work, we investigate the entrapment of microbubbles on a hydrophobic surface, structured with microwells, when water flow passes along, and the subsequent microbubble dissolution. At entrapment, the microbubble is initially pinned at the edge of the microwell. At some point, the three-phase contact line detaches from one side of the edge and separates from the wall, after which it further recedes. We systematically investigate the evolution of the footprint diameter and the contact angle of the entrapped microbubbles, which reveals that the dissolution process is in the constant contact angle mode. By varying the gas undersaturation level, we quantify how a high gas undersaturation enhances the dissolution process, and compare with simplified theoretical predictions for dissolving bubbles on a plane surface. We find that geometric partial blockage effects of the diffusive flux out of the microbubble trapped in the microwell lead to reduced dissolution rates.

7.
Phys Rev Lett ; 120(22): 224501, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906161

ABSTRACT

Droplet evaporation of multicomponent droplets is essential for various physiochemical applications, e.g., in inkjet printing, spray cooling, and microfabrication. In this work, we observe and study the phase segregation of an evaporating sessile binary droplet, consisting of a miscible mixture of water and a surfactantlike liquid (1,2-hexanediol). The phase segregation (i.e., demixing) leads to a reduced water evaporation rate of the droplet, and eventually the evaporation process ceases due to shielding of the water by the nonvolatile 1,2-hexanediol. Visualizations of the flow field by particle image velocimetry and numerical simulations reveal that the timescale of water evaporation at the droplet rim is faster than that of the Marangoni flow, which originates from the surface tension difference between water and 1,2-hexanediol, eventually leading to segregation.

8.
J Phys Chem Lett ; 9(8): 1838-1844, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29595980

ABSTRACT

Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.

9.
Soft Matter ; 13(15): 2749-2759, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28295107

ABSTRACT

Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

10.
Eur Phys J E Soft Matter ; 39(11): 106, 2016 11.
Article in English | MEDLINE | ID: mdl-27841013

ABSTRACT

In the study of nanobubbles, nanodroplets or nanolenses immobilised on a substrate, a cross-section of a spherical cap is widely applied to extract geometrical information from atomic force microscopy (AFM) topographic images. In this paper, we have developed a comprehensive 3D spherical-cap fitting procedure (3D-SCFP) to extract morphologic characteristics of complete or truncated spherical caps from AFM images. Our procedure integrates several advanced digital image analysis techniques to construct a 3D spherical-cap model, from which the geometrical parameters of the nanostructures are extracted automatically by a simple algorithm. The procedure takes into account all valid data points in the construction of the 3D spherical-cap model to achieve high fidelity in morphology analysis. We compare our 3D fitting procedure with the commonly used 2D cross-sectional profile fitting method to determine the contact angle of a complete spherical cap and a truncated spherical cap. The results from 3D-SCFP are consistent and accurate, while 2D fitting is unavoidably arbitrary in the selection of the cross-section and has a much lower number of data points on which the fitting can be based, which in addition is biased to the top of the spherical cap. We expect that the developed 3D spherical-cap fitting procedure will find many applications in imaging analysis.

11.
Proc Natl Acad Sci U S A ; 113(31): 8642-7, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27418601

ABSTRACT

Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

12.
Langmuir ; 32(23): 5744-54, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27183892

ABSTRACT

The location and morphology of femtoliter nanodroplets that nucleate and grow on a microcap-decorated substrate in contact with a liquid phase were investigated. We experimentally examined four different wetting combinations of the flat area and the microcaps. The results show that depending on the relative wettability, the droplets sit either on the plain surface or on the top of the microcap or on the rim of the microcap. The contact angle and, for the last case, the radial positions of the nanodroplets relative to the microcap center were characterized, in reasonable agreement with our theoretical analysis, which is based on an interfacial energy minimization argument. However, the experimental data show considerable scatter around the theoretical equilibrium curves, reflecting pinning and thus nonequilibrium effects. We also provide the theoretical phase diagram in parameter space of the contact angles, revealing under which conditions the nanodroplet will nucleate on the rim of the microcap.

13.
Proc Natl Acad Sci U S A ; 112(30): 9253-7, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26159418

ABSTRACT

Nanodroplets on a solid surface (i.e., surface nanodroplets) have practical implications for high-throughput chemical and biological analysis, lubrications, laboratory-on-chip devices, and near-field imaging techniques. Oil nanodroplets can be produced on a solid-liquid interface in a simple step of solvent exchange in which a good solvent of oil is displaced by a poor solvent. In this work, we experimentally and theoretically investigate the formation of nanodroplets by the solvent exchange process under well-controlled flow conditions. We find significant effects from the flow rate and the flow geometry on the droplet size. We develop a theoretical framework to account for these effects. The main idea is that the droplet nuclei are exposed to an oil oversaturation pulse during the exchange process. The analysis shows that the volume of the nanodroplets increases with the Peclet number Pe of the flow as ∝ Pe(3/4), which is in good agreement with our experimental results. In addition, at fixed flow rate and thus fixed Peclet number, larger and less homogeneously distributed droplets formed at less-narrow channels, due to convection effects originating from the density difference between the two solutions of the solvent exchange. The understanding from this work provides valuable guidelines for producing surface nanodroplets with desired sizes by controlling the flow conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...