Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(49): 27054-27066, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38040669

ABSTRACT

Single-atom catalysts (SACs) featuring M-N-C moieties have garnered significant attention as efficient electrocatalysts for the oxygen reduction reaction (ORR). However, the role of the dynamic M-N configuration of SACs induced by the derived frameworks under applied ORR potentials remains poorly understood. Herein, we conduct a comprehensive investigation using multiple operando techniques to assess the dynamic configurations of Cu SACs under various microstructural interface (MSI) regulations by anchoring atomic Cu on g-C3N4 and zeolitic imidazolate framework (ZIF) substrates. Cu SACs supported on g-C3N4 exhibit symmetric Cu-N configurations characterized by a reversibly adaptive nature under operational conditions, which leads to their excellent ORR catalytic activity. In contrast, the Cu-N configuration in ZIF-derived Cu SACs undergoes irreversible structural changes during the ORR process, in which the elongated Cu-N pair is unstable and breaks during the ORR, acting as a competing reaction against the ORR and resulting in high overpotential requirements. Crucially, operando time-resolved X-ray absorption spectroscopy (TR-XAS) and Raman results unequivocally reveal the reversibly adapting properties of the local Cu-N configuration in atomic Cu-anchored g-C3N4, which have been overlooked in numerous literatures. All findings provide valuable insights into the potential-driven characteristics of atomic electrocatalysts during target reactions and offer a systematic approach to study atomic electrocatalysts and their corresponding catalytic behaviors.

2.
Chem Soc Rev ; 52(15): 5013-5050, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37431250

ABSTRACT

The ubiquity of solid-liquid interfaces in nature and the significant role of their atomic-scale structure in determining interfacial properties have led to intensive research. Particularly in electrocatalysis, however, a molecular-level picture that clearly describes the dynamic interfacial structures and organizations with their correlation to preferred reaction pathways in electrochemical reactions remains poorly understood. In this review, CO2 electroreduction reaction (CO2RR) is spatially and temporally understood as a result of intricate interactions at the interface, in which the interfacial features are highly relevant. We start with the discussion of current understandings and model development associated with the charged electrochemical interface as well as its dynamic landscape. We further highlight the interactive dynamics from the interfacial field, catalyst surface charges and various gradients in electrolyte and interfacial water structures at interfaces under CO2RR working conditions, with emphasis on the interfacial-structure dependence of catalytic reactivity/selectivity. Significantly, a probing energy-dependent "in situ characterization map" for dynamic interfaces based on various complementary in situ/operando techniques is proposed, aiming to present a comprehensive picture of interfacial electrocatalysis and to provide a more unified research framework. Moreover, recent milestones in both experimental and theoretical aspects to establish the correct profile of electrochemical interfaces are stressed. Finally, we present key scientific challenges with related perspectives toward future opportunities for this exciting frontier.

3.
J Am Chem Soc ; 145(12): 6953-6965, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36921031

ABSTRACT

Copper-oxide electrocatalysts have been demonstrated to effectively perform the electrochemical CO2 reduction reaction (CO2RR) toward C2+ products, yet preserving the reactive high-valent CuOx has remained elusive. Herein, we demonstrate a model system of Lewis acidic supported Cu electrocatalyst with a pulsed electroreduction method to achieve enhanced performance for C2+ products, in which an optimized electrocatalyst could reach ∼76% Faradaic efficiency for C2+ products (FEC2+) at ∼-0.99 V versus reversible hydrogen electrode, and the corresponding mass activity can be enhanced by ∼2 times as compared to that of conventional CuOx. In situ time-resolved X-ray absorption spectroscopy investigating the dynamic chemical/physical nature of Cu during CO2RR discloses that an activation process induced by the KOH electrolyte during pulsed electroreduction greatly enriched the Cuδ+O/Znδ+O interfaces, which further reveals that the presence of Znδ+O species under the cathodic potential could effectively serve as a Lewis acidic support for preserving the Cuδ+O species to facilitate the formation of C2+ products, and the catalyst structure-property relationship of Cuδ+O/Znδ+O interfaces can be evidently realized. More importantly, we find a universality of stabilizing Cuδ+O species for various metal oxide supports and to provide a general concept of appropriate electrocatalyst-Lewis acidic support interaction for promoting C2+ products.

4.
Article in English | MEDLINE | ID: mdl-35156793

ABSTRACT

Utilizing renewable electricity energy to convert CO2 into fuels and chemicals, namely, CO2 electrocatalytic reduction reaction (CO2RR), is becoming increasingly significant yet challenged by low activity and selectivity. Recently, a growing number of studies have demonstrated that oxidized species can surprisingly survive on the catalyst surface under highly cathodic CO2RR conditions and play crucial roles in affecting the product selectivity. However, dynamic evolutions of the surface chemical state together with its real correlation to the product selectivity are still unclear, which is one of the most controversial topics for CO2RR. Herein, we particularly resurvey recent CO2RR researches that are all based on advanced in situ/operando methodologies, aiming to clearly reveal the realistic variations in surface chemical state under the working conditions. Then, recent progress in the regulation of the surface chemical state toward specific CO2RR products in current state-of-the-art catalysts with varying metal centers is systematically summarized, which shows an impressive relation between the dynamic chemical state and product profile. Next, we further highlight the developed strategies to regulate the surface chemical state in catalysts and discuss the debates over the effects of chemical state on product profile during CO2RR. Finally, on the basis of previous achievements, we present major challenges and some perspectives for the exploration of the imperative chemical state sensitivity to product profile during CO2RR.

5.
Biomedicines ; 9(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34572347

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in "naïve" non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of "senescence-induced senescence" can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients.

6.
ACS Appl Mater Interfaces ; 13(44): 52134-52143, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34258990

ABSTRACT

To reach a carbon-neutral future, electrochemical CO2 reduction reaction (eCO2RR) has proven to be a strong candidate for the next-generation energy system. Among potential materials, single-atom catalysts (SACs) serve as a model to study the mechanism behind the reduction of CO2 to CO, given their well-defined active metal centers and structural simplicity. Moreover, using metal-organic frameworks (MOFs) as supports to anchor and stabilize central metal atoms, the common concern, metal aggregation, for SACs can be addressed well. Furthermore, with their turnability and designability, MOF-derived SACs can also extend the scope of research on SACs for the eCO2RR. Herein, we synthesize sulfurized MOF-derived Mn SACs to study effects of the S dopant on the eCO2RR. Using complementary characterization techniques, the metal moiety of the sulfurized MOF-derived Mn SACs (MnSA/SNC) is identified as MnN3S1. Compared with its non-sulfur-modified counterpart (MnSA/NC), the MnSA/SNC provides uniformly superior activity to produce CO. Specifically, a nearly 30% enhancement of Faradaic efficiency (F.E.) in CO production is observed, and the highest F.E. of approximately 70% is identified at -0.45 V. Through operando spectroscopic characterization, the probing results reveal that the overall enhancement of CO production on the MnSA/SNC is possibly caused by the S atom in the local MnN3S1 moiety, as the sulfur atom may induce the formation of S-O bonding to stabilize the critical intermediate, *COOH, for CO2-to-CO. Our results provide novel design insights into the field of SACs for the eCO2RR.

7.
Angew Chem Int Ed Engl ; 60(32): 17254-17267, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-33682240

ABSTRACT

The promoted activity and enhanced selectivity of electrocatalysts is commonly ascribed to specific structural features such as surface facets, morphology, and atomic defects. However, unraveling the factors that really govern the direct electrochemical reduction of CO2 (CO2 RR) is still very challenging since the surface state of electrocatalysts is dynamic and difficult to predict under working conditions. Moreover, theoretical predictions from the viewpoint of thermodynamics alone often fail to specify the actual configuration of a catalyst for the dynamic CO2 RR process. Herein, we re-survey recent studies with the emphasis on revealing the dynamic chemical state of Cu sites under CO2 RR conditions extracted by in situ/operando characterizations, and further validate a critical link between the chemical state of Cu and the product profile of CO2 RR. This point of view provides a generalizable concept of dynamic chemical-state-driven CO2 RR selectivity that offers an inspiration in both fundamental understanding and efficient electrocatalysts design.

8.
Small ; 17(16): e2005713, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33538084

ABSTRACT

Single-atom catalysts (SAs) with the maximum atom utilization and breakthrough activities toward hydrogen evolution reaction (HER) have attracted considerable research interests. Uncovering the nature of single-atom metal centers under operating electrochemical condition is highly significant for improving their catalytic performance, yet is poorly understood in most studies. Herein, Pt single atoms anchoring on the nitrogen-carbon substrate (PtSA /N-C) as a model system are utilized to investigate the dynamic structure of Pt single-atom centers during the HER process. Via in situ/operando synchrotron X-ray absorption spectroscopy and X-ray photoelectron spectroscopy, an intriguing structural reconstruction at atomic level is identified in the PtSA /N-C when it is subjected to the repetitive linear sweep voltammetry and cyclic voltammetry scanning. It demonstrates that the PtN bonding tends to be weakened under cathodic potentials, which induces some Pt single atoms to dynamically aggregate into forming small clusters during the HER reaction. More importantly, experimental evidence and/or indicator is offered to correlate the observed Tafel slope with the dynamic structure of Pt catalysts. This work provides an evident understanding of SAs under electrocatalytic process and offers informative insights into constructing efficient catalysts at atomic level for electrochemical water-splitting system.

9.
Nanoscale ; 12(35): 18013-18021, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856664

ABSTRACT

Unraveling the reaction mechanism behind the CO2 reduction reaction (CO2RR) is a crucial step for advancing the development of efficient and selective electrocatalysts to yield valuable chemicals. To understand the mechanism of zinc electrocatalysts toward the CO2RR, a series of thermally oxidized zinc foils is prepared to achieve a direct correlation between the chemical state of the electrocatalyst and product selectivity. The evidence provided by in situ Raman spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray diffraction significantly demonstrates that the Zn(ii) and Zn(0) species on the surface are responsible for the production of carbon monoxide (CO) and formate, respectively. Specifically, the destruction of a dense oxide layer on the surface of zinc foil through a thermal oxidation process results in a 4-fold improvement of faradaic efficiency (FE) of formate toward the CO2RR. The results from in situ measurements reveal that the chemical state of zinc electrocatalysts could dominate the product profile for the CO2RR, which provides a promising approach for tuning the product selectivity of zinc electrocatalysts.

10.
Cell Mol Neurobiol ; 40(1): 25-51, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31435851

ABSTRACT

The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.


Subject(s)
Melatonin/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Apoptosis/drug effects , Disease Models, Animal , Melatonin/chemistry , Melatonin/pharmacology , Nervous System Diseases/drug therapy , Nervous System Diseases/pathology , Neuroprotective Agents/pharmacology , Rodentia
11.
World J Clin Cases ; 7(17): 2573-2579, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31559295

ABSTRACT

BACKGROUND: The portosystemic shunt is the pathway between the portal vein (PV) and systemic circulation. A spontaneous intrahepatic portosystemic shunt (SPISS) is a rare portosystemic shunt type. Here we report an extremely rare type of SPISS, a spontaneous intrahepatic PV-inferior vena cava shunt (SPIVCS). CASE SUMMARY: A 66-year-old woman was admitted to our hospital with the complaint of abdominal distention and a decreased appetite for 1 mo. The patient had a 20-year history of hepatitis B surface antigen positivity and a 5-year history of cirrhosis. She had been treated with Chinese herbal medicine for a long time. Liver function tests showed: alanine aminotransferase, 35 U/L; aspartate aminotransferase, 42 U/L; serum albumin (ALB) 32.2 g/L; and serum ascites ALB gradient, 25.2 g/L. Abdominal ultrasonography and enhanced computed tomography showed that the left branch of the PV was thin and occluded; the right branch of the PV was thick and showed a vermicular dilatation vein cluster in the upper pole of the right kidney that branched out and converged into the inferior vena cava from the bare area of the lower right posterior lobe of the liver. We diagnosed her with an extremely rare SPIVCS caused by portal hypertension and provided symptomatic treatment after admission. One week later, her symptoms disappeared and she was discharged. CONCLUSION: SPIVCS is a rare portosystemic shunt with a clear history of cirrhosis and portal hypertension. Clarifying the type PV shunt has important clinical significance.

12.
J Ethnopharmacol ; 243: 112110, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31351190

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum bungei Decne. (CB) (Asclepiadaceae) and its two related species Cynanchum auriculatum Royle ex Wight. (CA) and Cynanchum wilfordii (Maxim.) Hemsl. (CW) are well known Chinese herbal medicines known by the name Baishouwu. Among them, CB has long been used for nourishing the kidney and liver, strengthening the bones and muscles, and regulating stomachache. However, to date, no comprehensive review on Baishouwu has been published. AIM OF THE REVIEW: This review aims to provide a comprehensive summary on traditional uses, phytochemistry, pharmacology, and toxicology of the three herbal components of Baishouwu with the ultimate objective of providing a guide for future scientific and therapeutic potential use of Baishouwu. MATERIAL AND METHODS: A literature search was undertaken on CB, CA and CW by analyzing the information from scientific databases (SciFinder, Pubmed, Elsevier, Google Scholar, Web of Science, and Baidu Scholar). Information was also gathered from local classic herbal literatures and conference papers on ethnopharmacology and the information provided in this review has been obtained from peer-reviewed papers. RESULTS: Comparative analysis of literature search indicate that ethnopharmacological use of CB was recorded in China, however, CA and CW have been used in China, Korea and Japan. To date, 151 chemical compounds have been isolated from these species, and the major chemical constituents have been revealed to be acetophenones, C21-steroids, terpenoids, and alkaloids. These compounds and extracts have been proven to exhibit significant pharmacological activities, including anti-tumor, anti-inflammatory, immunomodulatory, hypolipidemic, anti-obesity, hepatoprotective, antifungal, antiviral, anti-depressant, vasodilating and estrogenic activities. CONCLUSIONS: CB, CA and CW collectively known as Baishouwu are valuable medicinal herbs with multiple pharmacological activities. The traditional use for nourishing liver is closely associated with the hepatoprotective activity. The available literature performs that various of the activity of Baishouwu can be attributed to acetophenones and C21-steroids. It is high time that more efforts should be focused on the underlying mechanisms of their beneficial bioactivities and the structure activity relationship of the constituents, as well as their potential synergistic and antagonistic effects. The proper toxicology evaluation is crucial to guarantee the safety, efficacy, and eligibility for medical use. Further research on the comprehensive evaluation of medicinal quality and the understanding of multi-target network pharmacology of Baishouwu is in great request.


Subject(s)
Cynanchum , Drugs, Chinese Herbal , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytotherapy
13.
Oxid Med Cell Longev ; 2016: 2153745, 2016.
Article in English | MEDLINE | ID: mdl-27525050

ABSTRACT

Chronic unpredictable mild stress (CUMS) induces hippocampal oxidative stress. H2S functions as a neuroprotectant against oxidative stress in brain. We have previously shown the upregulatory effect of H2S on BDNF protein expression in the hippocampus of rats. Therefore, we hypothesized that H2S prevents CUMS-generated oxidative stress by upregulation of BDNF-TrkB pathway. We showed that NaHS (0.03 or 0.1 mmol/kg/day) ameliorates the level of hippocampal oxidative stress, including reduced levels of malondialdehyde (MDA) and 4-hydroxy-2-trans-nonenal (4-HNE), as well as increased level of glutathione (GSH) and activity of superoxide dismutase (SOD) in the hippocampus of CUMS-treated rats. We also found that H2S upregulated the level of BDNF and p-TrkB protein in the hippocampus of CUMS rats. Furthermore, inhibition of BDNF signaling by K252a, an inhibitor of the BDNF receptor TrkB, blocked the antioxidant effects of H2S on CUMS-induced hippocampal oxidative stress. These results reveal the inhibitory role of H2S in CUMS-induced hippocampal oxidative stress, which is through upregulation of BDNF/TrkB pathway.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hydrogen Sulfide/metabolism , Oxidative Stress/drug effects , Receptor, trkB/metabolism , Stress, Physiological/drug effects , Sulfides/pharmacology , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Hippocampus/metabolism , Male , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Stress, Physiological/physiology , Up-Regulation/drug effects
14.
Mol Neurobiol ; 48(3): 794-807, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23653329

ABSTRACT

Excessive K(+) efflux promotes central neuronal apoptosis; however, the type of potassium channel that mediates K(+) efflux in response to different apoptosis-inducing stimuli is still unknown. It is hypothesized that the activation of large-conductance Ca(2+)-activated K(+) channels (BKCa) mediates hypoxia/reoxygenation (H/R)- and ischemia/reperfusion (I/R)-induced neuronal apoptosis. Rat hippocampal neuronal cultures underwent apoptosis after reoxygenation, as assessed by morphologic observation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and caspase-3 activation. Single-channel recordings revealed upregulation of BKCa channel activity 6 h after reoxygenation, which might be caused by elevated cytosolic Ca(2+). The K(+) ionophore valinomycin and the BKCa channel opener NS1619 induced neuronal apoptosis. Transfection of the BKCa channel α subunit into Chinese hamster ovary (CHO-K1) cells, which do not express endogenous K(+) channels, or into neurons will induce cell apoptosis, indicating that the opening of the BKCa channel serves as a pivotal event in mediating cell apoptosis. The specific BKCa channel blockers charybdotoxin and iberiotoxin and the nonselective K(+) channel blocker tetraethylammonium at concentrations more specific to the BKCa channel were neuroprotective. The A-type potassium channel blocker 4-aminopyridine and apamin, a small-conductance Ca(2+)-activated K(+) channel blocker, were not protective. This result suggests the involvement of the BKCa channel in H/R-induced apoptosis. Similarly, specific BKCa channel blockers also showed neuroprotection in neurons subjected to oxygen-glucose deprivation/reoxygenation or animals subjected to forebrain ischemia-reperfusion. These results demonstrate that the over-activity of BKCa channels mediates hippocampal neuronal damage induced by H/R in vitro and I/R in vivo.


Subject(s)
Hippocampus/pathology , Ion Channel Gating , Neurons/pathology , Oxygen/pharmacology , Potassium Channels/metabolism , Reperfusion , Animals , CHO Cells , Calcium/metabolism , Calcium Signaling/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Hypoxia/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , Enzyme Activation/drug effects , Glucose/deficiency , Intracellular Space/drug effects , Intracellular Space/metabolism , Ion Channel Gating/drug effects , Ischemic Attack, Transient/pathology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Male , Neurons/drug effects , Neurons/enzymology , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...