Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 115(8): 1053-65, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17721773

ABSTRACT

Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.


Subject(s)
Gene Dosage , Plant Proteins/metabolism , Seeds/genetics , Starch Synthase/genetics , Starch/biosynthesis , Triticum/genetics , Biomarkers , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/physiology , Polymerase Chain Reaction , Seeds/enzymology , Seeds/metabolism , Starch/chemistry , Starch Synthase/physiology , Triticum/chemistry , Triticum/enzymology
2.
Biomacromolecules ; 8(3): 885-91, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17266368

ABSTRACT

An improved method to analyze the (13)C NMR spectra of native starches, which considers the contribution of the V-type conformation and the nature of the amorphous component, has been developed. Starch spectra are separated into amorphous and ordered subspectra, using intensity at 84 ppm as a reference point. The ordered subspectra of high amylose starches show the presence of both V-type single helices and B-type double helices. Relative proportions of amorphous, single, and double-helical conformations are estimated by apportioning intensity of C1 peak areas between conformational types on the basis of ordered and amorphous subspectra of the native starch. Quantitative analysis shows that the V-type single-helical component increases with amylose content of starches. Different amorphous subspectra are needed to provide a consistent analysis of granular starches from diverse sources. The method of preparation was found to be more important than the starch botanical origin in determining (13)C NMR spectral features of amorphous samples.


Subject(s)
Biochemistry/methods , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes/chemistry , Macromolecular Substances , Models, Chemical , Molecular Conformation , Molecular Structure , Starch/chemistry , X-Ray Diffraction , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...