Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Article in English | MEDLINE | ID: mdl-38713882

ABSTRACT

PURPOSE: Total knee arthroplasty (TKA) stands as a primary intervention for severe knee ailments, yet concerns remain regarding postoperative patient satisfaction and flexion instability. This study aims to evaluate the in-vivo kinematics of medial-pivot (MP) and posterior-stabilised (PS) designs during step-up activity, in comparison to the kinematics of the nonoperated contralateral knee. METHODS: Sixteen patients with PS-TKA and 14 with MP-TKA were retrospectively examined. Clinical outcomes were assessed using patient-completed questionnaires. Motion during step-up was captured using a dual fluoroscopic system. Statistical analysis was applied to evaluate the in-vivo tibiofemoral six-degree-of-freedom kinematics and articular contact positions between the two groups. RESULTS: Despite being older, patients in the MP group reported higher postoperative subjective scores for weight-bearing functional activities. The axial rotation centres of MP-TKA located on the medial tibial plateau exhibited less variance compared to PS-TKA and contralateral knees. Compared to the contralateral knee (contralateral to medial-pivot [C-MP] or contralateral to posterior-stabilised [C-PS]), the MP group exhibited limited range of motion in terms of anteroposterior translation (MP: 3.6 ± 1.3 mm vs. C-MP: 7.4 ± 2.5 mm, p < 0.01) and axial rotation (MP: 6.6 ± 1.9° vs. C-MP: 10.3 ± 4.9°, p = 0.02), as well as in the PS group for anteroposterior translation (PS: 3.9 ± 1.7 mm vs. C-PS: 7.2 ± 3.7 mm, p < 0.01). CONCLUSION: The MP group with better postoperative ratings demonstrated a more stable MP axial rotation pattern during step-up activity compared to the PS group, underscoring the pivotal role of prosthetic design in optimising postoperative rehabilitation and functional recovery. LEVEL OF EVIDENCE: Level III.

2.
Proc Biol Sci ; 291(2023): 20240612, 2024 May.
Article in English | MEDLINE | ID: mdl-38772419

ABSTRACT

Plant microbiomes that comprise diverse microorganisms, including prokaryotes, eukaryotes and viruses, are the key determinants of plant population dynamics and ecosystem function. Despite their importance, little is known about how species interactions (especially trophic interactions) between microbes from different domains modify the importance of microbiomes for plant hosts and ecosystems. Using the common duckweed Lemna minor, we experimentally examined the effects of predation (by bacterivorous protists) and parasitism (by bacteriophages) within microbiomes on plant population size and ecosystem phosphorus removal. Our results revealed that the addition of predators increased plant population size and phosphorus removal, whereas the addition of parasites showed the opposite pattern. The structural equation modelling further pointed out that predation and parasitism affected plant population size and ecosystem function via distinct mechanisms that were both mediated by microbiomes. Our results highlight the importance of understanding microbial trophic interactions for predicting the outcomes and ecosystem impacts of plant-microbiome symbiosis.


Subject(s)
Ecosystem , Microbiota , Food Chain , Araceae/microbiology , Araceae/physiology , Symbiosis , Population Density , Phosphorus/metabolism
3.
Int J Biol Macromol ; 270(Pt 2): 132170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734333

ABSTRACT

Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.


Subject(s)
Gastrointestinal Microbiome , Polysaccharides , Humans , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Lipid Metabolism/drug effects
4.
Front Plant Sci ; 15: 1331710, 2024.
Article in English | MEDLINE | ID: mdl-38595761

ABSTRACT

The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.

5.
J Food Sci ; 89(5): 2827-2842, 2024 May.
Article in English | MEDLINE | ID: mdl-38578114

ABSTRACT

Ultrasound assisted hot water extraction (UAHWE) was applied to extraction of polysaccharides from Taraxacum mongolicum with hot water as extract solvent. Experimental factors in UAHWE process were optimized by response surface methodology. The optimal extraction parameters to achieve the highest Taraxacum mongolicum polysaccharides (TMPs) yield (12.08 ± 0.14)% by UAHWE were obtained under the ultrasound power of 200 W, extraction temperature of 62°C, solid-to-liquid ratio of 1:20 g/mL, and extraction time of 40 min, and then the crude TMPs were further purified by DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous polysaccharide fraction (TMPs-1-SG). Subsequently, the structure of TMPs-1-SG was characterized by UV-vis, Fourier transform infrared spectroscopy (FT-IR), high performance gel permeation chromatography (HPGPC), high performance liquid chromatography (HPLC), scanning electron microscope (SEM), transmission electron microscopy (TEM), and Congo red test. The results display that TMPs-1-SG with an average molecular weight of 5.49 × 104 Da was comprised of mannose (Man), galactose (Gal), xylose (Xyl), and arabinose (Ara) with a molar ratio of 39.85:52.61:27.14:6.30. Moreover, TMPs-1-SG did not contain a triple helix structure. Furthermore, TMPs-1-SG and TEM presented a sheet-like, rod-shaped, and irregular structure. Finally, the antioxidant activity of TMPs-1-SG was evaluated by in vitro experiment. The IC50 values of scavenging DPPH and OH radicals for TMPs-1-SG achieved 0.71 mg/mL and 0.75 mg/mL, respectively. The findings can provide an effective method for extracting polysaccharides from natural resources.


Subject(s)
Antioxidants , Hot Temperature , Plant Extracts , Polysaccharides , Taraxacum , Taraxacum/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Water/chemistry , Molecular Weight , Spectroscopy, Fourier Transform Infrared/methods , Chromatography, High Pressure Liquid/methods , Ultrasonics/methods
6.
BMC Plant Biol ; 24(1): 213, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528453

ABSTRACT

BACKGROUND: KNOTTED1-like homeobox (KNOX) genes, plant-specific homologous box transcription factors (TFs), play a central role in regulating plant growth, development, organ formation, and response to biotic and abiotic stresses. However, a comprehensive genome-wide identification of the KNOX genes in Moso bamboo (Phyllostachys edulis), the fastest growing plant, has not yet been conducted, and the specific biological functions of this family remain unknown. RESULTS: The expression profiles of 24 KNOX genes, divided into two subfamilies, were determined by integrating Moso bamboo genome and its transcriptional data. The KNOX gene promoters were found to contain several light and stress-related cis-acting elements. Synteny analysis revealed stronger similarity with rice KNOX genes than with Arabidopsis KNOX genes. Additionally, several conserved structural domains and motifs were identified in the KNOX proteins. The expansion of the KNOX gene family was primarily regulated by tandem duplications. Furthermore, the KNOX genes were responsive to naphthaleneacetic acid (NAA) and gibberellin (GA) hormones, exhibiting distinct temporal expression patterns in four different organs of Moso bamboo. Short Time-series Expression Miner (STEM) analysis and quantitative real-time PCR (qRT-PCR) assays demonstrated that PeKNOX genes may play a role in promoting rapid shoot growth. Additionally, Gene Ontology (GO) and Protein-Protein Interaction (PPI) network enrichment analyses revealed several functional annotations for PeKNOXs. By regulating downstream target genes, PeKNOXs are involved in the synthesis of AUX /IAA, ultimately affecting cell division and elongation. CONCLUSIONS: In the present study, we identified and characterized a total of 24 KNOX genes in Moso bamboo and investigated their physiological properties and conserved structural domains. To understand their functional roles, we conducted an analysis of gene expression profiles using STEM and RNA-seq data. This analysis successfully revealed regulatory networks of the KNOX genes, involving both upstream and downstream genes. Furthermore, the KNOX genes are involved in the AUX/IAA metabolic pathway, which accelerates shoot growth by influencing downstream target genes. These results provide a theoretical foundation for studying the molecular mechanisms underlying the rapid growth and establish the groundwork for future research into the functions and transcriptional regulatory networks of the KNOX gene family.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Poaceae/metabolism , Oryza/genetics , Oryza/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Genome, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Phytomedicine ; 128: 155547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547615

ABSTRACT

BACKGROUND: Emerging evidence suggests that pyroptosis, a form of programmed cell death, has been implicated in cancer progression. The involvement of specific proteins in pyroptosis is an area of growing interest. TOM20, an outer mitochondrial membrane protein, has recently garnered attention for its potential role in pyroptosis. Our previous study found that NBT could induce pyroptosis by ROS/JNK pathway in esophageal cancer cells. PURPOSE: This study aims to investigate whether NBT induces pyroptosis and verify whether such effects are involved in up-regulation of TOM20 in esophageal cancer cells. METHODS: The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) was used to analyze the clinical significance of GSDME in esophageal cancer. MTT assay, morphological observation and Western blot were performed to verify the roles of TOM20 and BAX in NBT-induced pyroptosis after CRISPR-Cas9-mediated knockout. Immunofluorescence was used to determine the subcellular locations of BAX and cytochrome c. MitoSOX Red was employed to assess the mitochondrial reactive oxygen species (ROS) level. KYSE450 and TOM20 knockout KYSE450-/- xenograft models were established to elucidate the mechanisms involved in NBT-induced cell death. RESULTS: In this study, NBT effectively upregulated the expression of TOM20 and facilitated the translocation of BAX to mitochondria, which promoted the release of cytochrome c from mitochondria to the cytoplasm, leading to the activation of caspase-9 and caspase-3, and finally induced pyroptosis. Knocking out TOM20 by CRISPR-Cas9 significantly inhibited the expression of BAX and the downstream BAX/caspase-3/GSDME pathway, which attenuated NBT-induced pyroptosis. The elevated mitochondrial ROS level was observed after NBT treatment. Remarkably, the inhibition of ROS by N-acetylcysteine (NAC) effectively suppressed the activation of TOM20/BAX pathway. Moreover, in vivo experiments demonstrated that NBT exhibited potent antitumor effects in both KYSE450 and TOM20 knockout KYSE450-/- xenograft models. Notably, the attenuated antitumor effects and reduced cleavage of GSDME were observed in the TOM20 knockout model. CONCLUSION: These findings reveal that NBT induces pyroptosis through ROS/TOM20/BAX/GSDME pathway, which highlight the therapeutic potential of targeting TOM20 and GSDME, providing promising prospects for the development of innovative and effective treatment approaches for esophageal cancer.


Subject(s)
Esophageal Neoplasms , Gasdermins , Mitochondrial Precursor Protein Import Complex Proteins , Pyroptosis , Reactive Oxygen Species , Signal Transduction , bcl-2-Associated X Protein , Animals , Humans , Male , Mice , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
8.
Int J Biol Macromol ; 262(Pt 1): 129923, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325677

ABSTRACT

Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.


Subject(s)
Medicine, Chinese Traditional , Neoplasms , Humans , Medicine, Chinese Traditional/methods , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , China
9.
Bioorg Chem ; 145: 107182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359707

ABSTRACT

Gambogenic acid (GNA), a caged xanthone derived from Garcinia hanburyi, exhibits a wide range of anti-cancer properties. The caged skeleton of GNA serves as the fundamental pharmacophore responsible for its antitumor effects. However, limited exploration has focused on the structural modifications of GNA. This study endeavors to diversify the structure of GNA and enhance its anti-cancer efficacy. Sulfoximines, recognized as pivotal motifs in medicinal chemistry due to their outstanding properties, have featured in several anti-cancer drugs undergoing clinical trials. Accordingly, a series of 33 GNA derivatives combined with sulfoximines were synthesized and evaluated for their anti-cancer effects against MIAPaCa2, MDA-MB-231, and A549 cells in vitro. The activity screening led to the identification of compound 12k, which exhibited the most potent anti-cancer effect. Mechanistic studies revealed that 12k primarily induced pyroptosis in MIAPaCa2 and MDA-MB-231 cells by activating the caspase-3/gasdermin E (GSDME) pathway. These findings suggested that 12k is a promising drug candidate in cancer therapy and highlighted the potential of sulfoximines as a valuable functional group in drug discovery.


Subject(s)
Apoptosis , Pyroptosis , Humans , Xanthenes/pharmacology , Xanthenes/chemistry , A549 Cells , Cell Line, Tumor
10.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108271

ABSTRACT

Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.

11.
Ultrason Sonochem ; 100: 106614, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801994

ABSTRACT

To understand the effect of coupling parameters between two ultrasonic waves on acoustic cavitation, in this work, Keller-Miksis equation was introduced to built a bubble dynamics model that was used to describe the dynamic evolution of bubble and to discuss the effect of dual-frequency coupling parameters, such as frequency difference f (5 âˆ¼ 280 kHz), phase difference φ (0 âˆ¼ 7π/4 rad), and power allocation ratio ß (0 âˆ¼ 9), on acoustic cavitation in the presence of two ultrasonic waves irradiation. The enhancement and attenuation effect of cavitation have also been analyzed in detail by comparing the different dual-frequency combinations with single-frequency mode. It was found that all coupling parameters have a significant impact on acoustic cavitation, where the smaller values of f and φ were employed when ß = 1, the stronger cavitation intensity was observed. Nevertheless, as the power allocation ratio is increased from 1 to 9 at φ = 0 for different frequency differences, the acoustic cavitation exhibits an attenuation trend. When the total acoustic power is evenly distributed, namely ß = 1, the largest maximum expansion ratio (i.e. 12.96) was obtained at φ = 0 and f = 5 kHz, which represents a strongest cavitation effect. In addition, for different frequency combinations, the enhancement effect is found under the mixture of low and low frequency, whereas attenuation effect is generated easily by the combination of high and low frequency. Moreover, the effect become more pronounced as the proportion of high frequency component increases.

12.
Cell Rep ; 42(10): 113263, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37851569

ABSTRACT

Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Antigens, CD19 , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
13.
Neurocirugía (Soc. Luso-Esp. Neurocir.) ; 34(5): 228-237, sept. oct. 2023.
Article in English | IBECS | ID: ibc-224904

ABSTRACT

Background Traditionally, most centers would use microelectrode recording (MER) to refine targeting in deep brain stimulation (DBS) surgery. In recent years, intraoperative imaging (IMG) guided DBS has become an alternative way to verify lead placement. Currently, there is still controversy surrounding the necessity of MER or IMG for DBS. This meta-analysis aims to explore lead accuracy, clinical efficacy and safety between IMG and MER guided DBS for Parkinson's disease (PD). Methods PubMed, Embase, Web of Science, Cochrane Library were searched up to Mar, 2021 for studies reporting comparisons between IMG and MER guided DBS for PD. Subgroup analysis was conducted to assess effects of different IMG technology and DBS targeting site. Results Six studies, comprising of 478 patients were included in our analysis. The mean difference between the two implantation techniques in stereotactic accuracy, lead passes per trajectory, improvement% of Unified Parkinson's Disease Rating Scale part III and levodopa equivalent daily dose were −0.45 (95% confidence interval, CI=−1.11 to 0.20), −0.18 (95% CI=−0.41 to 0.06), 3.40 (95% CI=−5.36 to 12.16), and 5.00 (95% CI=−1.40 to 11.39), respectively. No significant differences were observed in each adverse event and operation/procedure time between the two implantation techniques. Conclusions Both IMG and MER guided DBS offered effective control of motor symptoms for PD. Besides, IMG guided is comparable to MER guided DBS, in terms of safety, accuracy and efficiency. It is recommended for each hospital to select DBS guidance technology based on available resources and equipment (AU)


Antecedentes Tradicionalmente, la mayoría de los centros usaban los microelectrodos de registro (microelectrode recording [MER]) para mejorar la orientación en la cirugía mediante la estimulación cerebral profunda (deep brain stimulation [DBS]). En los últimos años, la DBS orientada mediante imágenes intraoperatorias (intraoperative imaging guided [IMG]) se ha convertido en una forma alternativa de verificar la colocación de los electrodos. Hoy en día, todavía existe controversia en torno al uso de MER o IMG para realizar una DBS. Este metaanálisis tiene como objetivo explorar la precisión de los electrodos, la eficacia clínica y la seguridad entre la DBS guiada mediante IMG y MER en el tratamiento de la enfermedad de Parkinson (EP). Métodos Se realizaron búsquedas en PubMed, Embase, Web of Science y Cochrane Library hasta marzo de 2021 para localizar estudios que informasen sobre comparaciones entre la DBS guiada mediante IMG y la guiada mediante MER en la EP. Se realizó un análisis de subgrupos para evaluar los efectos de una tecnología IMG y una ubicación DBS guiada diferentes. Resultados En nuestro análisis hemos incluido seis estudios con 478 pacientes. La diferencia media entre las dos técnicas de implantación en la precisión estereotáctica, los pasos del electrodo por trayectoria, el porcentaje de mejora de la escala unificada de clasificación de la enfermedad de Parkinson, parteIII, y la dosis diaria equivalente de levodopa fueron −0,45 (intervalo de confianza del 95% [IC 95%]: −1,11 a 0,20), −0,18 (IC 95%: −0,41 a 0,06), 3,40 (IC 95%: −5,36 a 12,16) y 5,00 (IC 95%: −1,40 a 11,39), respectivamente. No se observaron diferencias significativas en cada evento adverso y tiempo de operación/procedimiento entre las dos técnicas de implantación (AU)


Subject(s)
Humans , Male , Female , Deep Brain Stimulation/methods , Surgery, Computer-Assisted/methods , Parkinson Disease/surgery , Treatment Outcome , Microelectrodes
15.
Environ Sci Technol ; 57(37): 13980-13990, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37668438

ABSTRACT

The rise of electronics inevitably induced the co-pollution of novel brominated flame retardants (NBFRs) and microplastics (MPs). However, studies on how they interact to influence their bioavailability are scarce. Here, we explored the influence mechanism of acrylonitrile butadiene styrene (ABS)-MPs on the bioaccumulation of decabromodiphenyl ethane (DBDPE) in soil-earthworm microcosms. The influence exhibited a temporal pattern characterized by short-term inhibition and long-term promotion. After 28 days of exposure, DBDPE bioaccumulation in a co-exposure (10 mg kg-1 DBDPE accompanied by 1000 mg kg-1 ABS-MPs) was 2.61 times higher than that in a separate exposure. The adsorption process in the soil, intestines, and mucus introduced DBDPE-carried MPs, which had a higher concentration of DBDPE than the surrounding soil and directly affected the bioavailability of DBDPE. MP-pre-exposure (100, 1000, and 10000 mg kg-1) reduced epidermal soundness, mucus secretion, and worm cast production. This eventually promoted the contact between earthworm and soil particles and enhanced the DBDPE of earthworm tissue by 6%-61% in the next DBDPE-postexposure period, confirming that MPs increased DBDPE bioaccumulation indirectly by impairing the earthworm health. This study indicates that MPs promoted DBDPE bioaccumulation via adsorption and self-toxicity, providing new insight into the combined risk of MPs and NBFRs.


Subject(s)
Acrylonitrile , Flame Retardants , Oligochaeta , Animals , Bioaccumulation , Microplastics , Plastics , Soil
16.
Microb Ecol ; 86(4): 2858-2868, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37610498

ABSTRACT

To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.


Subject(s)
Araceae , Microbiota , Microbiota/genetics , Bacteria/genetics , Araceae/microbiology
17.
Int J Biol Macromol ; 252: 126199, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37562477

ABSTRACT

The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.


Subject(s)
Hypoglycemic Agents , Polysaccharides , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Monosaccharides , Molecular Weight
18.
Sci Total Environ ; 889: 164303, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37211097

ABSTRACT

Little is known about how brominated flame retardants (NBFRs) and microplastics (MPs) co-pollution influences soil organisms. Here, we investigated the impacts of acrylonitrile butadiene styrene (ABS)-MPs in soil on the 28-d dynamic bioaccumulation, tissue damage, and transcriptional responses of decabromodiphenyl ethane (DBDPE) in Eisenia fetida by simulating different pollution scenarios (10 mg kg-1 DBDPE, 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-MPs, and 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-resin). The results show ABS resin did not influence DBDPE bioaccumulation or distribution, but ABS-MPs, particularly 74-187 µm size of MPs, prolonged DBDPE equilibrium time and significantly promoted DBDPE bioaccumulation in tissue (1.76-2.38 folds) and epidermis (2.72-3.34 folds). However, ABS-MPs and ABS-resin reduced DBDPE concentrations of intestines by 22.2-30.6 % and 37.3 %, respectively. DBDPE-MPs caused more serious epidermis and intestines damages than DBDPE. Additionally, compared to the control, DBDPE significantly up-regulated 1957 genes and down-regulated 2203 genes; meanwhile, DBDPE-MPs up-regulated 1475 genes and down-regulated 2231 genes. DBDPE and DBDPE-MPs both regulated lysosome, phagosome, and apoptosis as the top 3 enriched pathways, while DBDPE-MPs specifically regulated signaling pathways and compound metabolism. This study demonstrated that the presence of ABS-MPs aggravated the biotoxicity of DBDPE, providing scientific information for assessing the ecological risks of MPs and additives from e-waste in soil.


Subject(s)
Acrylonitrile , Oligochaeta , Animals , Microplastics , Plastics/toxicity , Acrylonitrile/toxicity , Bioaccumulation , Butadienes/toxicity , Polystyrenes/toxicity , Soil
19.
Food Funct ; 14(8): 3437-3453, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37013946

ABSTRACT

Panax ginseng C. A. Meyer is a type of plant resource that has been used as both a traditional medicine and food for thousands of years. Although ginseng has been used widely, people in China are often concerned that the long-term use or overdose of ginseng might cause a series of mild adverse effects such as insomnia, dizziness, dysphoria and dryness of mouth and eyes, which are commonly known as "Shanghuo" () according to traditional Chinese medicine (TCM) theory. This review summarizes relevant studies on ginseng and "Shanghuo" and tries to elucidate the relationship between them from both traditional and modern science perspectives. Ginseng-induced "Shanghuo" is mainly driven by the hot property of the drug according to TCM theory, and it is believed to be related to energy metabolism and the endocrine, immune and cardiovascular systems. Ginsenosides such as Rf, Rh1 and Rg2 may play important roles in inducing "Shanghuo", as the physiological effects of these compounds are similar to the biochemical changes observed during "Shanghuo". It is still under debate whether the improper use of ginseng causes "Shanghuo", since "Shanghuo" is dependent on the dosage of the drug, the TCM constitution type and other factors. This study provides insights into ginseng and "Shanghuo" from the perspective of TCM theory and modern medicine, along with its potential mechanisms, helping to provide safe and rational use of ginseng.


Subject(s)
Ginsenosides , Panax , Humans , Medicine, Chinese Traditional , Panax/chemistry , Medicine, Traditional , Eye , Energy Metabolism
20.
Sci Total Environ ; 876: 163208, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37011695

ABSTRACT

Non-ferrous metal mining activities are known to cause ecological irreversible damage in the tailings and surrounding areas as well as heavy metal (HM) contamination. The enhancement of Chlorella-montmorillonite interaction on the remediation of HM contaminated tailings was verified from the lab to the tailings in Daye City, Hubei Province, China. The results showed a positive correlation between the quantity of montmorillonite and the transformation of Pb and Cu into residual and carbonate-binding states, which resulted in a considerable decrease in the leaching ratio. The buildup of tailings fertility throughout this process benefited from montmorillonite's ability to buffer environmental changes and store water. This further offers a required environmental foundation for the rebuilding of microbial community and the growth of herbaceous plants. The structural equation model demonstrated that the interaction between Chlorella and montmorillonite directly affected the stability of HM, and that this interaction also had an impact on the accumulation of organic carbon, total nitrogen, and available phosphorus, which improved the immobilization of Pb, Cu, Cd, and Zn. This work made the first attempt to apply Chlorella-montmorillonite composite to in-situ tailings remediation, and proposed that the combination of inorganic clay minerals and organic microorganisms was an eco-friendly, long-lasting, and efficient method for immobilizing multiple-HMs in mining areas.


Subject(s)
Chlorella , Metals, Heavy , Soil Pollutants , Bentonite , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...