Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1757, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413612

ABSTRACT

Candidalysin, a cytolytic peptide toxin secreted by the human fungal pathogen Candida albicans, is critical for fungal pathogenesis. Yet, its intracellular targets have not been extensively mapped. Here, we performed a high-throughput enhanced yeast two-hybrid (HT-eY2H) screen to map the interactome of all eight Ece1 peptides with their direct human protein targets and identified a list of potential interacting proteins, some of which were shared between the peptides. CCNH, a regulatory subunit of the CDK-activating kinase (CAK) complex involved in DNA damage repair, was identified as one of the host targets of candidalysin. Mechanistic studies revealed that candidalysin triggers a significantly increased double-strand DNA breaks (DSBs), as evidenced by the formation of γ-H2AX foci and colocalization of CCNH and γ-H2AX. Importantly, candidalysin binds directly to CCNH to activate CAK to inhibit DNA damage repair pathway. Loss of CCNH alleviates DSBs formation under candidalysin treatment. Depletion of candidalysin-encoding gene fails to induce DSBs and stimulates CCNH upregulation in a murine model of oropharyngeal candidiasis. Collectively, our study reveals that a secreted fungal toxin acts to hijack the canonical DNA damage repair pathway by targeting CCNH and to promote fungal infection.


Subject(s)
Candida albicans , Fungal Proteins , Humans , Mice , Animals , Fungal Proteins/genetics , Fungal Proteins/metabolism , Candida albicans/metabolism , Peptides/metabolism
2.
Microbiol Spectr ; 10(4): e0132422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35730962

ABSTRACT

The vaginal microbiota dysbiosis is closely associated with the development of reproductive diseases. However, the contribution of mycobiome to intrauterine adhesion (IUA) disease remains unknown. Harnessing 16S and ITS2 rDNA sequencing analysis, we investigate both bacterial and fungal microbiota compositions across 174 samples taken from both cervical canal (CC) and middle vagina (MV) sites of IUA patients. Overall, there is no significant difference in microbial diversity between healthy subjects (HS) and IUA patients. However, we observe the IUA-specific bacterial alterations such as increased Dialister and decreased Bifidobacterium and enriched fungal genera like increased Filobasidium and Exophiala. Moreover, site-specific fungal-bacterial correlation networks are discovered in both CC and MV samples of IUA patients. Mechanistic investigation shows that Candida parapsilosis, other than Candida albicans and Candida maltosa, prevents the exacerbation of inflammatory activities and fibrosis, and modulates bacterial microbiota during IUA progression in a rat model of IUA. Our study thus highlights the importance of mycobiota in IUA progression, which may facilitate the development of therapeutic target for IUA prevention. IMPORTANCE Intrauterine adhesion (IUA) often leads to hypomenorrhea, amenorrhea, repeat miscarriages, and infertility. It has been prevalent over the last few decades in up to 13% of women who experience pregnancy termination during the first trimester, and 30% of women undergo dilation and curettage after a late, spontaneous abortion. However, the pathogenesis of IUA remains unclear. Despite reports of microbiota dysbiosis during IUA progression, there is little information on the effect of fungal microbiota on the development of IUA. This study not only enhances our understanding of the mycobiome in IUA patients but also provides potential intervention strategies for prevention of IUA by targeting mycobiome.


Subject(s)
Microbiota , Mycobiome , Uterine Diseases , Animals , Bacteria/genetics , Dysbiosis/microbiology , Female , Humans , Pregnancy , Rats , Tissue Adhesions/etiology , Uterine Diseases/complications
3.
Transl Res ; 247: 39-57, 2022 09.
Article in English | MEDLINE | ID: mdl-35452875

ABSTRACT

Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.


Subject(s)
Azoles , Mycoses , Antifungal Agents/pharmacology , Azoles/pharmacology , Azoles/therapeutic use , ErbB Receptors , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology
4.
Nat Microbiol ; 7(2): 238-250, 2022 02.
Article in English | MEDLINE | ID: mdl-35087227

ABSTRACT

Despite recent progress in our understanding of the association between the gut microbiome and colorectal cancer (CRC), multi-kingdom gut microbiome dysbiosis in CRC across cohorts is unexplored. We investigated four-kingdom microbiota alterations using CRC metagenomic datasets of 1,368 samples from 8 distinct geographical cohorts. Integrated analysis identified 20 archaeal, 27 bacterial, 20 fungal and 21 viral species for each single-kingdom diagnostic model. However, our data revealed superior diagnostic accuracy for models constructed with multi-kingdom markers, in particular the addition of fungal species. Specifically, 16 multi-kingdom markers including 11 bacterial, 4 fungal and 1 archaeal feature, achieved good performance in diagnosing patients with CRC (area under the receiver operating characteristic curve (AUROC) = 0.83) and maintained accuracy across 3 independent cohorts. Coabundance analysis of the ecological network revealed associations between bacterial and fungal species, such as Talaromyces islandicus and Clostridium saccharobutylicum. Using metagenome shotgun sequencing data, the predictive power of the microbial functional potential was explored and elevated D-amino acid metabolism and butanoate metabolism were observed in CRC. Interestingly, the diagnostic model based on functional EggNOG genes achieved high accuracy (AUROC = 0.86). Collectively, our findings uncovered CRC-associated microbiota common across cohorts and demonstrate the applicability of multi-kingdom and functional markers as CRC diagnostic tools and, potentially, as therapeutic targets for the treatment of CRC.


Subject(s)
Bacteria/genetics , Colorectal Neoplasms/diagnosis , Fungi/genetics , Gastrointestinal Microbiome/genetics , Metagenome , Microbial Interactions/genetics , Adult , Aged , Bacteria/classification , Bacteria/metabolism , Biomarkers/analysis , Cohort Studies , Colorectal Neoplasms/classification , Dysbiosis/microbiology , Feces/microbiology , Female , Fungi/classification , Fungi/metabolism , Humans , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Sequence Analysis, DNA , Viruses/classification , Viruses/genetics
5.
Front Cell Infect Microbiol ; 11: 627917, 2021.
Article in English | MEDLINE | ID: mdl-33968796

ABSTRACT

Candida albicans (C. albicans) is an opportunistic human fungal pathogen that can cause severe infection in clinic. Its incidence and mortality rate has been increasing rapidly. Amphotericin B (AMB), the clinical golden standard antifungal agent, has severe side effects that limit its clinical application. Thus, lowering the concentration and increasing the efficacy of AMB in a combinatorial antifungal therapy have been pursued by both industry and academia. Here we identify that fingolimod (FTY720), an immunomodulatory drug used for oral treatment of relapsing-remitting multiple sclerosis, can potentiate the efficacy of AMB against C. albicans growth synergistically. Furthermore, we observe an antifungal efficacy of FTY720 in combination with AMB against diverse fungal pathogens. Intriguingly, cells treated with both drugs are hypersensitive to endothelial endocytosis and macrophage killing. This is later found to be due to the hyperaccumulation of reactive oxygen species and the corresponding increase in activities of superoxide dismutase and catalase in the cells that received combinatorial treatment. Therefore, the combination of AMB and FTY720 provides a promising antifungal strategy.


Subject(s)
Amphotericin B , Antifungal Agents , Candida albicans , Fingolimod Hydrochloride , Humans , Microbial Sensitivity Tests
6.
NPJ Precis Oncol ; 4(1): 33, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33303906

ABSTRACT

The correlations between microbiota dysbiosis and cancer have gained extensive attention and been widely explored. As a leading cancer diagnosis worldwide, lung cancer poses a great threat to human health. The healthy human lungs are consistently exposed to external environment and harbor a specific pattern of microbiota, sharing many key pathological and physiological characteristics with the intestinal tract. Although previous findings uncovered the critical roles of microbiota in tumorigenesis and response to anticancer therapy, most of them were focused on the intestinal microbiota rather than lung microbiota. Notably, the considerable functions of microbiota in maintaining lung homeostasis should not be neglected as the microbiome dysbiosis may promote tumor development and progression through production of cytokines and toxins and multiple other pathways. Despite the fact that increasing studies have revealed the effect of microbiome on the induction of lung cancer and different disease status, the underlying mechanisms and potential therapeutic strategies remained unclear. Herein, we summarized the recent progresses about microbiome in lung cancer and further discussed the role of microbial communities in promoting lung cancer progression and the current status of therapeutic approaches targeting microbiome to alleviate and even cure lung cancer.

7.
Curr Cancer Drug Targets ; 20(6): 410-416, 2020.
Article in English | MEDLINE | ID: mdl-32286947

ABSTRACT

The outbreak of COVID-19 due to SARS-CoV-2 originally emerged in Wuhan in December 2019. As of March 22, 2020, the disease spread to 186 countries, with at least 305,275 confirmed cases. Although there has been a decline in the spread of the disease in China, the prevalence of COVID-19 around the world remains serious despite containment efforts undertaken by national authorities and the international community. In this article, we systematically review the brief history of COVID-19 and its epidemic and clinical characteristics, highlighting the strategies used to control and prevent the disease in China, which may help other countries respond to the outbreak. This pandemic emphasizes the need to be constantly alert to shifts in both the global dynamics and the contexts of individual countries, making sure that all are aware of which approaches are successful for the prevention, containment and treatment of new diseases, and being flexible enough to adapt the responses accordingly.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , China/epidemiology , Coronavirus Infections/therapy , Global Health/statistics & numerical data , Humans , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...