Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 562, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840036

ABSTRACT

BACKGROUND: Floral transition in cereals is a critical phenomenon influenced by exogenous and endogenous signals, determining crop yield and reproduction. Flowering Locus T-like (FT-like) genes encode a mobile florigen, the main signaling molecule for flowering. RESULTS: In this study, we characterized two FT-like genes, FTL9 and FTL10, to study their functional diversity in flowering control in rice. We compared independent mutant lines of ftl10 with WT and observed negligible differences in the flowering phenotype, or agronomic traits implying potentially redundant roles of FTL10 loss-of-function in flowering control in rice. Nevertheless, we found that overexpression of FTL10, but not FTL9, substantially accelerated flowering, indicating the flowering-promoting role of FTL10 and the divergent functions between FTL9 and FTL10 in flowering. Besides flowering, additive agronomic roles were observed for FTL10-OE regulating the number of effective panicles per plant, the number of primary branches per panicle, and spikelets per panicle without regulating seed size. Mechanistically, our Y2H and BiFC analyses demonstrate that FTL10, in contrast to FTL9, can interact with FD1 and GF14c, forming a flowering activation complex and thereby regulating flowering. CONCLUSION: Altogether, our results elucidate the regulatory roles of FTL9 and FTL10 in flowering control, unveiling the molecular basis of functional divergence between FTL10 and FTL9, which provides mechanistic insights into shaping the dynamics of flowering time regulation in rice.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype
2.
BMC Plant Biol ; 21(1): 542, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34800993

ABSTRACT

BACKGROUND: Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. RESULTS: In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. CONCLUSION: This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.


Subject(s)
Cold Temperature , Cold-Shock Response/genetics , Flowers/growth & development , Flowers/genetics , Oryza/growth & development , Oryza/genetics , Quantitative Trait Loci/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Genotype
3.
Rice (N Y) ; 14(1): 62, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34224034

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes. However, the role of the m6A methylomes in rice is still poorly understood. With the development of the MeRIP-seq technique, the in-depth identification of mRNAs with m6A modification has become feasible. A study suggested that m6A modification is crucial for posttranscriptional regulation related to Cd2+-induced malignant transformation, but the association between m6A modification in plants and Cd tolerance has not been reported. We investigated the m6A methylomes in the roots of a cadmium (Cd)-treated group and compared them with the roots in the control (CK) group by m6A sequencing of cv. 9311 and cv. Nipponbare (NIP) plants. The results indicated that Cd leads to an altered modification profile in 3,406 differential m6A peaks in cv. 9311 and 2,065 differential m6A peaks in cv. NIP. KEGG pathway analysis of the genes with differentially modified m6A peaks indicated that the "phenylalanine", "tyrosine and tryptophan biosynthesis", "glycine", "adherens junctions", "glycerophospholipid metabolism" and "threonine metabolism" signalling pathways may be associated with the abnormal root development of cv. 9311 rice due to exposure to Cd. The "arginine", "proline metabolism", "glycerolipid", and "protein processing in endoplasmic reticulum" metabolism pathways were significantly enriched in genes with differentially modified m6A peaks in cv. NIP. Unlike that in Arabidopsis, the m6A-modified nucleotide position on mRNAs (m6A peak) distribution in rice exhibited a preference towards both the stop codon and 3' untranslated regions (3' UTRs). These findings provide a resource for plant RNA epitranscriptomic studies and further increase our knowledge on the function of m6A modification in RNA in plants.

4.
BMC Genomics ; 20(1): 1009, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31870289

ABSTRACT

BACKGROUND: Agricultural insects are one of the major threats to crop yield. It is a known fact that pesticide application is an extensive approach to eliminate insect pests, and has severe adverse effects on environment and ecosystem; however, there is lack of knowledge whether it could influence the physiology and metabolic processes in plants. RESULTS: Here, we systemically analyzed the transcriptomic changes in rice after a spray of two commercial pesticides, Abamectin (ABM) and Thiamethoxam (TXM). We found only a limited number of genes (0.91%) and (1.24%) were altered by ABM and TXM respectively, indicating that these pesticides cannot dramatically affect the performance of rice. Nevertheless, we characterized 1140 Differentially Expressed Genes (DEGs) interacting with 105 long non-coding RNAs (lncRNAs) that can be impacted by the two pesticides, suggesting their certain involvement in response to farm chemicals. Moreover, we detected 274 alternative splicing (AS) alterations accompanied by host genes expressions, elucidating a potential role of AS in control of gene transcription during insecticide spraying. Finally, we identified 488 transposons that were significantly changed with pesticides treatment, leading to a variation in adjacent coding or non-coding transcripts. CONCLUSION: Altogether, our results provide valuable insights into pest management through appropriate timing and balanced mixture, these pesticides have no harmful effects on crop physiology over sustainable application of field drugs.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Oryza/drug effects , Oryza/genetics , Pesticides/pharmacology , Alternative Splicing/genetics , DNA Transposable Elements/genetics , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...