Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 128: 106883, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36402115

ABSTRACT

Corrosion damage in reinforcing steel bars has been a major cause of cracking and spalling of reinforced concrete. To extend the service life of concrete structures, non-destructive testing methods are necessary to assess the corrosion status in order to conduct a timely repair. At the early stage of corrosion, rust grows from the reinforcing bar, subsequently generates cracks towards the surface of the concrete. Ultrasonic methods have been widely used to detect cracks in concrete. However, it is challenging to characterise them due to the heterogeneous material properties of the concrete. In this paper, ultrasonic imaging technique based on diffuse coda wave has been explored to inspect and characterise corrosion-induced cracks. In this method, scattering cross-section of the crack is reconstructed with the Locadiff imaging technique. Based on the assumption that both crack tips have the same scattering cross-section, the size of the crack can be estimated when the location of the reinforcing bar is known. Numerical simulations were carried out to image straight and curved cracks, showing excellent accuracy. Experiments were designed subsequently on concrete samples with accelerated corrosion. The induced cracks were characterised by the proposed ultrasonic method, and compared with X-ray CT results, showing very good agreement.

2.
Polymers (Basel) ; 12(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023192

ABSTRACT

Material-scale tests involving milligrams of samples are used to optimize fire-retardant coating formulations, but actual applications of these coatings require them to be assessed with structural-scale fire tests. This significant difference in the scale of testing (milligrams to kilograms of sample) raises many questions on the relations between the inherent flammability and thermal characteristics of the coating materials and their "performance" at the structural scale. Moreover, the expected "performance" requirements and the definition of "performance" varies at different scales. In this regard, the pathway is not established when designing and formulating fire-retardant coatings for structural steel sections or members. This manuscript explores the fundamental relationships across different scales of testing with the help of a fire-protective system based on acrylic resin with a typical combination of intumescent additives, viz. ammonium polyphosphate, pentaerythritol, and expandable graphite. One of the main outcomes of this work dictates that higher heat release rate values and larger amounts of material participating in the pyrolysis process per unit time will result in a rapid rise in steel substrate temperature. This information is very useful in the design and development of generic fire-retardant coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...