Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 16(11): 27058-71, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26569237

ABSTRACT

Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin(-) cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin(-)c-Kit⁺ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.


Subject(s)
Benzene/toxicity , Gene Expression Regulation/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , MicroRNAs/genetics , Transcriptome , Animals , Cell Count , Environmental Pollutants/toxicity , Erythrocyte Indices/drug effects , Gene Expression Profiling , Immunophenotyping , Mice , Mice, Inbred C57BL , Phenotype , Reproducibility of Results
2.
Int J Environ Res Public Health ; 12(9): 11241-53, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26378550

ABSTRACT

The small peptides representation of the original proteins are a valuable source of information that can be used as biomarkers involved in toxicity mechanism for chemical exposure. The aim of this study is to investigate serum peptide biomarkers of benzene exposure. C57BL/6 mice were enrolled into control group and benzene groups of 150 and 300 mg/kg/d Serum peptides were identified by mass spectrometry using an assisted laser desorption ionization/time of flight mass spectrometry (MS). Differential peptide spectra were obtained by tandem mass spectrometry and analyzed by searching the International Protein Index using the Sequest program. Forty-one peptide peaks were found in the range of 1000-10,000 Da molecular weight. Among them, seven peaks showed significantly different expression between exposure groups and control group. Two peptide peaks (1231.2 and 1241.8), which showed a two-fold increase in expression, were sequenced and confirmed as glucose 6-phosphate dehydrogenase (G6PD) and heat shock protein 90 Beta (HSP90 Beta), respectively. Furthermore, the expression of the two proteins in liver cells showed the same trend as in serum. In conclusion, G6PD and HSP90 beta might be the candidate serum biomarkers of benzene exposure. It also provided possible clues for the molecular mechanism of benzene-induced oxidative stress.


Subject(s)
Benzene/toxicity , Biomarkers/blood , Gene Expression/physiology , Glucosephosphate Dehydrogenase/blood , HSP90 Heat-Shock Proteins/blood , Animals , Mice , Mice, Inbred C57BL , Molecular Weight , Peptides/blood , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry
3.
Int J Environ Res Public Health ; 12(8): 9298-313, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26262635

ABSTRACT

Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage(-) sca-1(+) c-kit(+) (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.


Subject(s)
Benzene/toxicity , Cell Proliferation/drug effects , Environmental Pollutants/toxicity , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells/drug effects , Signal Transduction/drug effects , Animals , Male , Mice , Mice, Inbred C3H , Toxicity Tests, Subchronic
4.
Int J Environ Res Public Health ; 11(10): 10036-50, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25264680

ABSTRACT

Previous studies have shown that formaldehyde (FA) could cause immunotoxicity by changing the number of T lymphocytes and that cytokines play a pivotal role in the regulation of T lymphocytes. However, the previously used cytokine detection methods are difficult to use in the measurement of several cytokines in a small amount of sample for one test. Therefore, the cytometric bead array (CBA) technique was used. CBA showed better analytical efficiency and sensitivity than the previous methods. C57BL/6 mice were exposed to the control (normal saline), low FA concentration (0.5 mg/kg), and high FA concentration (2 mg/kg) for 1 week or 1 month. The contents of cytokines, including Th1-related cytokines (IL-2, IFN-γ, and tumor necrosis factor), Th2-related cytokines (IL-4, IL-6, and IL-10), and Th17-related cytokines (IL-17A), were measured by using the BD FACS Canto II Flow Cytometer and analyzed by FCAP ArrayTM Software. Th1/Th2/Th17-related cytokines showed a slightly decreasing trend after low FA exposure. Conversely, a significantly increasing trend was found after high FA exposure. Th1/Th2/Th17-related cytokines all serve important functions in the immune reactions in mice after FA exposure.


Subject(s)
Cytokines/immunology , Formaldehyde/toxicity , Hazardous Substances/toxicity , T-Lymphocytes, Helper-Inducer/drug effects , Animals , Cytokines/blood , Flow Cytometry/methods , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology
5.
Int J Mol Sci ; 15(9): 16458-68, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25233128

ABSTRACT

Formaldehyde (FA) is a ubiquitous compound used in a wide variety of industries, and is also a major indoor pollutant emitted from building materials, furniture, etc. Because FA is rapidly metabolized and endogenous to many materials, specific biomarkers for exposure have not been identified. In this study, we identified small metabolite biomarkers in urine that might be related FA exposure. Mice were allowed to inhale FA (0, 4, 8 mg/m3) 6 h per day for 7 consecutive days, and urine samples were collected on the 7th day of exposure. Liquid chromatography coupled with time of flight-mass spectrometry and principal component analysis (PCA) was applied to determine alterations of endogenous metabolites in urine. Additionally, immune toxicity studies were conducted to ensure that any resultant toxic effects could be attributed to inhalation of FA. The results showed a significant decrease in the relative rates of T lymphocyte production in the spleen and thymus of mice exposed to FA. Additionally, decreased superoxide dismutase activity and increased reactive oxygen species levels were found in the isolated spleen cells of exposed mice. A total of 12 small molecules were found to be altered in the urine, and PCA analysis showed that urine from the control and FA exposed groups could be distinguished from each other based on the altered molecules. Hippuric acid and cinnamoylglycine were identified in urine using exact mass and fragment ions. Our results suggest that the pattern of metabolites found in urine is significantly changed following FA inhalation, and hippuric acid and cinnamoylglycine might represent potential biomarker candidates for FA exposure.


Subject(s)
Biomarkers/urine , Formaldehyde/adverse effects , Respiratory Hypersensitivity , Administration, Inhalation , Animals , Chromatography, High Pressure Liquid , Female , Glycine/analogs & derivatives , Glycine/urine , Hippurates/urine , Male , Mass Spectrometry , Mice , Mice, Inbred BALB C , Principal Component Analysis , Reactive Oxygen Species/metabolism , Spleen/enzymology , Spleen/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...