Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854134

ABSTRACT

Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.

2.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915631

ABSTRACT

During development, microglia prune excess synapses to refine neuronal circuits. In neurodegeneration, the role of microglia-mediated synaptic pruning in circuit remodeling and dysfunction is important for developing therapies aimed at modulating microglial function. Here we analyzed the role of microglia in the synapse disassembly of degenerating postsynaptic neurons in the inner retina. After inducing transient intraocular pressure elevation to injure retinal ganglion cells, microglia increase in number, shift to ameboid morphology, and exhibit greater process movement. Furthermore, due to the greater number of microglia, there is increased colocalization of microglia with synaptic components throughout the inner plexiform layer and with excitatory synaptic sites along individual ganglion cell dendrites. Microglia depletion partially restores ganglion cell function, suggesting that microglia activation may be neurotoxic in early neurodegeneration. Our results demonstrate the important role of microglia in synapse disassembly in degenerating circuits, highlighting their recruitment to synaptic sites early after neuronal injury.

3.
Curr Biol ; 33(18): 3805-3820.e7, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37586372

ABSTRACT

Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.


Subject(s)
Lysosomes , Macular Degeneration , Mice , Animals , Lysosomes/metabolism , Phagocytosis , Retinal Pigment Epithelium/metabolism , TOR Serine-Threonine Kinases/metabolism , Macular Degeneration/metabolism
4.
Front Cell Dev Biol ; 10: 1044672, 2022.
Article in English | MEDLINE | ID: mdl-36393836

ABSTRACT

Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.

5.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33822768

ABSTRACT

Age-related macular degeneration (AMD) damages the retinal pigment epithelium (RPE), the tissue that safeguards photoreceptor health, leading to irreversible vision loss. Polymorphisms in cholesterol and complement genes are implicated in AMD, yet mechanisms linking risk variants to RPE injury remain unclear. We sought to determine how allelic variants in the apolipoprotein E cholesterol transporter modulate RPE homeostasis and function. Using live-cell imaging, we show that inefficient cholesterol transport by the AMD risk-associated ApoE2 increases RPE ceramide, leading to autophagic defects and complement-mediated mitochondrial damage. Mitochondrial injury drives redox state-sensitive cysteine-mediated phase separation of ApoE2, forming biomolecular condensates that could nucleate drusen. The protective ApoE4 isoform lacks these cysteines and is resistant to phase separation and condensate formation. In Abca-/- Stargardt macular degeneration mice, mitochondrial dysfunction induces liquid-liquid phase separation of p62/SQSTM1, a multifunctional protein that regulates autophagy. Drugs that decrease RPE cholesterol or ceramide prevent mitochondrial injury and phase separation in vitro and in vivo. In AMD donor RPE, mitochondrial fragmentation correlates with ApoE and p62 condensates. Our studies demonstrate that major AMD genetic and biological risk pathways converge upon RPE mitochondria, and identify mitochondrial stress-mediated protein phase separation as an important pathogenic mechanism and promising therapeutic target in AMD.


Subject(s)
Biomolecular Condensates/metabolism , Ceramides/metabolism , Cholesterol/metabolism , Macular Degeneration/metabolism , Mitochondria/metabolism , Retinal Pigment Epithelium/metabolism , Sequestosome-1 Protein/metabolism , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Autophagy/physiology , Biomolecular Condensates/pathology , Complement System Proteins/metabolism , Intravital Microscopy , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Mice, Knockout , Mitochondria/pathology , Oxidative Stress , Retinal Pigment Epithelium/pathology
6.
Redox Biol ; 37: 101781, 2020 10.
Article in English | MEDLINE | ID: mdl-33162377

ABSTRACT

The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.


Subject(s)
Lipid Metabolism , Macular Degeneration , Complement Activation/genetics , Humans , Lipid Metabolism/genetics , Macular Degeneration/genetics , Macular Degeneration/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Retinal Pigment Epithelium/metabolism
7.
Prog Retin Eye Res ; : 100846, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32105772

ABSTRACT

The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.

8.
Proc Natl Acad Sci U S A ; 115(36): 9014-9019, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30126999

ABSTRACT

Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.


Subject(s)
Complement C3a/metabolism , Endosomes/metabolism , Macular Degeneration/congenital , Retinal Pigment Epithelium/metabolism , TOR Serine-Threonine Kinases/metabolism , ATP-Binding Cassette Transporters/deficiency , Aged , Aged, 80 and over , Animals , Ceramides/genetics , Ceramides/metabolism , Complement C3a/genetics , Disease Models, Animal , Endosomes/genetics , Endosomes/pathology , Female , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Knockout , Retinal Pigment Epithelium/pathology , Stargardt Disease , Swine , TOR Serine-Threonine Kinases/genetics
9.
Plant Physiol ; 176(1): 364-377, 2018 01.
Article in English | MEDLINE | ID: mdl-29042459

ABSTRACT

A P-type H+-ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis (Arabidopsis thaliana) plant expressing H+-ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H+ secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H+-ATPase.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Cell Membrane/enzymology , Environment , Proton-Translocating ATPases/metabolism , Arabidopsis/radiation effects , Cell Membrane/radiation effects , Fluorescent Dyes/metabolism , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Light , Organ Specificity , Phosphotransferases/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/radiation effects , Recombinant Fusion Proteins/metabolism , Seedlings/growth & development , Seedlings/radiation effects
10.
Mol Vis ; 23: 60-89, 2017.
Article in English | MEDLINE | ID: mdl-28356702

ABSTRACT

PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Cell Line , Down-Regulation/genetics , Epithelial Cells/metabolism , Gene Ontology , Humans , Melanins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis/genetics , Phenotype , Retinoids/metabolism , Up-Regulation/genetics
11.
Proc Natl Acad Sci U S A ; 113(31): 8789-94, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432952

ABSTRACT

The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations.


Subject(s)
Complement Membrane Attack Complex/metabolism , Complement System Proteins/metabolism , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , CD59 Antigens/metabolism , Calcium/metabolism , Cells, Cultured , Cholesterol/metabolism , Humans , Lysosomes/metabolism , Macular Degeneration/congenital , Macular Degeneration/genetics , Mice, Knockout , Mitochondria/metabolism , Oxidative Stress , Retinal Pigment Epithelium/cytology , Sphingomyelin Phosphodiesterase/metabolism , Stargardt Disease , Swine
12.
Adv Exp Med Biol ; 854: 3-9, 2016.
Article in English | MEDLINE | ID: mdl-26427386

ABSTRACT

The cholesterol transporting protein apolipoprotein E (ApoE) occurs in three allelic variants in humans unlike in other species. The resulting protein isoforms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk for several diseases of aging including atherosclerosis, Alzheimer's disease, and age-related macular degeneration (AMD). A single E4 allele increases the risk of developing Alzheimer's disease, whereas the E2 allele is protective. Intriguingly, the E4 allele is protective in AMD. Current thinking about different functions of ApoE isoforms comes largely from studies on Alzheimer's disease. These data cannot be directly extrapolated to AMD since the primary cells affected in these diseases (neurons vs. retinal pigment epithelium) are so different. Here, we propose that ApoE serves a fundamentally different purpose in regulating cholesterol homeostasis in the retinal pigment epithelium and this could explain why allelic risk factors are flipped for AMD compared to Alzheimer's disease.


Subject(s)
Apolipoprotein E2/metabolism , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Macular Degeneration/metabolism , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Humans , Lipoproteins/metabolism , Macular Degeneration/genetics , Neurons/metabolism , Protein Binding , Receptors, LDL/metabolism , Retinal Pigment Epithelium/metabolism , Risk Factors
13.
Mol Biol Cell ; 26(1): 1-14, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25378587

ABSTRACT

Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.


Subject(s)
Autophagy , Cholesterol/metabolism , Macular Degeneration/physiopathology , Phagosomes/metabolism , Retinal Pigment Epithelium/ultrastructure , Sphingomyelin Phosphodiesterase/metabolism , Animals , Ceramides/metabolism , Humans , Lipofuscin/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Microtubules/metabolism , Monoglycerides/metabolism , Retinoids/pharmacology , Tubulin/metabolism
15.
Cell Cycle ; 10(17): 2836-9, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21857161

ABSTRACT

We previously showed that widespread expression of Nras G12D/G12D from its endogenous locus in mice leads to an acute myeloproliferative disease (MPD) with a complete penetrance, whereas bone marrow-specific expression of Nras G12D/G12D in recipient mice did not result in sustained MPD phenotypes but 100% penetrant acute T-cell lymphoblastic leukemia/lymphoma (TALL). Such a phenotypic switch also is seen in the case of endogenous oncogenic Kras. Two possibilities might account for this observation and they are not necessarily mutually exclusive. First, the MPD phenotypes in primary Nras G12D/G12D mice might be a transient phenomenon attributable to microenvironmental factors that do not necessarily imply the potential for long-term maintenance in a hematopoietic-cell autonomous manner. Second, it is likely that MPD phenotypes are maintained by genetically altered hematopoietic stem cells (HSCs). Nras G12D/G12D signaling might substantially alter HSC behaviors (e.g. induce their proliferative exhaustion) so that these HSCs no longer sustain MPD phenotypes to a lethal stage in recipient mice. Here, we show some preliminary results to support the second hypothesis. Our results suggest that different lineages of hematopoietic cells might have differential requirements of HSC activity and Nras G12D signaling during leukemogenesis.


Subject(s)
Hematopoietic Stem Cells/cytology , Myeloproliferative Disorders/pathology , Signal Transduction , ras Proteins/metabolism , Animals , Cell Transformation, Neoplastic/metabolism , Flow Cytometry , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/pathology , Interferons/metabolism , Leukemia, Experimental , Mice , Mice, Transgenic , Phenotype , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Splenomegaly/pathology
16.
Blood ; 118(2): 368-79, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21586752

ABSTRACT

Both monoallelic and biallelic oncogenic NRAS mutations are identified in human leukemias, suggesting a dose-dependent role of oncogenic NRAS in leukemogenesis. Here, we use a hypomorphic oncogenic Nras allele and a normal oncogenic Nras allele (Nras G12D(hypo) and Nras G12D, respectively) to create a gene dose gradient ranging from 25% to 200% of endogenous Nras G12D/+. Mice expressing Nras G12D(hypo)/G12D(hypo) develop normally and are tumor-free, whereas early embryonic expression of Nras G12D/+ is lethal. Somatic expression of Nras G12D/G12D but not Nras G12D/+ leads to hyperactivation of ERK, excessive proliferation of myeloid progenitors, and consequently an acute myeloproliferative disease. Using a bone marrow transplant model, we previously showed that ∼ 95% of animals receiving Nras G12D/+ bone marrow cells develop chronic myelomonocytic leukemia (CMML), while ∼ 8% of recipients develop acute T-cell lymphoblastic leukemia/lymphoma [TALL] (TALL-het). Here we demonstrate that 100% of recipients transplanted with Nras G12D/G12D bone marrow cells develop TALL (TALL-homo). Although both TALL-het and -homo tumors acquire Notch1 mutations and are sensitive to a γ-secretase inhibitor, endogenous Nras G12D/+ signaling promotes TALL through distinct genetic mechanism(s) from Nras G12D/G12D. Our data indicate that the tumor transformation potential of endogenous oncogenic Nras is both dose- and cell type-dependent.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Dosage/physiology , Genes, ras/genetics , Hematologic Neoplasms/genetics , Mutation , Amino Acid Substitution/physiology , Animals , Aspartic Acid/genetics , Bone Marrow Transplantation/physiology , Female , Genes, ras/physiology , Glutamic Acid/genetics , Hematologic Neoplasms/therapy , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/physiology , Oncogenes/genetics , Oncogenes/physiology , Organ Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...