Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chronobiol Int ; : 1-14, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046293

ABSTRACT

First, significantly higher mate-finding success was found under light condition than under constant darkness condition in Phauda flammans, a typical diurnal moth. We speculate that mate-finding behavior in P. flammans may be influenced by the light-sensitive opsin genes Long wavelength opsin (PfLW), Ultraviolet opsin (PfUV) and Blue opsin (PfBL), which are potentially regulated by both light-cues and endogenous circadian rhythms. Second, the circadian clock genes Period (PfPer), Timeless (PfTim), Cryptochrome1 (PfCry1), Cryptochrome2 (PfCRY2), Cryptochrome3 (PfCry-like), Clock (PfClk), Cycle (PfCyc), Vrille (PfVri), and Slimb (PfSli) were identified in P. flammans. Third, circadian rhythms in the relative expression levels of opsin and circadian clock genes were demonstrated via quantitative real-time PCR analysis, with peak expression coinciding with the mate-finding peak. Notably, the relative expression of PfLW in males P. flammans was significantly higher than that in females P. flammans at the mate-finding peaks Zeitgeber time (ZT) 8 and ZT 10 under light, while the expression of the opsin gene PfBL showed a similar pattern at ZT 10 under light. Additionally, the expression of the clock gene PfCry-like was significantly higher in males than in females at ZT 8 and ZT 10 under light, while PfPer, PfTim, PfClk and PfCyc exhibited similar male-biased expression patterns at ZT 10 under light. Conversely, PfCry1 and PfVri expression was significantly higher in females than in male at ZT 8 under light. In conclusion, sex differences were detected in the expression of opsin and circadian clock genes, which indicated that light-mediated regulation of these genes may contribute to the daytime mate-finding behavior of P. flammans.

2.
Front Physiol ; 13: 907694, 2022.
Article in English | MEDLINE | ID: mdl-35846004

ABSTRACT

Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.

3.
Zootaxa ; 4852(1): zootaxa.4852.1.2, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-33056707

ABSTRACT

The genus Macromotettixoides Zheng, Wei Jiang, 2005 is reviewed. Four new species of the genus, M. daiyunshanensis Deng, sp. nov., M. curvicarina Deng, sp. nov., M. convexa Deng, sp. nov. and M. shengtangshanensis Deng, sp. nov. are described with detailed illustrations of external morphology. Two new synonyms are established: M. jinggangshanensis, syn. nov. is synonymized with M. jiuwanshanensis Zheng, Wei Jiang, 2005; M. parvula Zha Wen, 2017, syn. nov. is synonymized with M. undulatifemura Deng, Zheng Yang, 2012. Additionally, an updated key to species of the genus is given.


Subject(s)
Orthoptera , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...