Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pathol Lab Med ; 145(5): 599-606, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32960950

ABSTRACT

CONTEXT.­: Studies on the adoption of voice recognition in health care have mostly focused on turnaround time and error rate, with less attention paid to the impact on the efficiency of the providers. OBJECTIVE.­: To study the impact of voice recognition on the efficiency of grossing biopsy specimens. DESIGN.­: Timestamps corresponding to barcode scanning for biopsy specimen bottles and cassettes were retrieved from the pathology information system database. The time elapsed between scanning a specimen bottle and the corresponding first cassette was the length of time spent on the gross processing of that specimen and is designated as the specimen time. For the first specimen of a case, the specimen time additionally included the time spent on dictating the clinical information. Therefore, the specimen times were divided into the following 2 categories: first-specimen time and subsequent-specimen time. The impact of voice recognition on specimen times was studied using both univariate and multivariate analyses. RESULTS.­: Specimen complexity, prosector variability, length of clinical information text, and the number of biopsies the prosector grossed that day were the major determinants of specimen times. Adopting voice recognition had a negligible impact on specimen times. CONCLUSIONS.­: Adopting voice recognition in the gross room removes the need to hire transcriptionists without negatively impacting the efficiency of the prosectors, resulting in an overall cost saving. Using computer scripting to automatically enter clinical information (received through the electronic order interface) into report templates may potentially increase the grossing efficiency in the future.


Subject(s)
Pathology, Clinical/methods , Speech Recognition Software , Biopsy , Efficiency , Humans , Multivariate Analysis , Pathology, Clinical/organization & administration , Reproducibility of Results , Time Factors , Workflow
2.
J Pathol Inform ; 10: 20, 2019.
Article in English | MEDLINE | ID: mdl-31367472

ABSTRACT

BACKGROUND: Pathology report defects refer to errors in the pathology reports, such as transcription/voice recognition errors and incorrect nondiagnostic information. Examples of the latter include incorrect gender, incorrect submitting physician, incorrect description of tissue blocks submitted, report formatting issues, and so on. Over the past 5 years, we have implemented computational algorithms to identify and correct these report defects. MATERIALS AND METHODS: Report texts, tissue blocks submitted, and other relevant information are retrieved from the pathology information system database. Two complementary algorithms are used to identify the voice recognition errors by parsing the gross description texts to either (i) identify previously encountered error patterns or (ii) flag sentences containing previously-unused two-word sequences (bigrams). A third algorithm based on identifying conflicting information from two different sources is used to identify tissue block designation errors in the gross description; the information on actual block submission is compared with the block designation information parsed from the gross description text. RESULTS: The computational algorithms identify voice recognition errors in approximately 8%-10% of the cases and block designation errors in approximately 0.5%-1% of all the cases. CONCLUSIONS: The algorithms described here have been effective in reducing pathology report defects. In addition to detecting voice recognition and block designation errors, these algorithms have also be used to detect other report defects, such as wrong gender, wrong provider, special stains or immunostains performed but not reported, and so on.

3.
Sci Rep ; 9(1): 8092, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147557

ABSTRACT

Limited knowledge is currently available about alterations of retinal blood flow (F), oxygen delivery (DO2), oxygen metabolism (MO2), oxygen extraction fraction (OEF), or thickness after the ophthalmic blood vessels have been closed for a substantial interval and then reopened. We ligated the ophthalmic vessels for 120 minutes in one eye of 17 rats, and measured these variables within 20 minutes after release of the ligature in the 10 rats which had immediate reflow. F, DO2 and MO2 were 5.2 ± 3.1 µL/min, 428 ± 271 nL O2/min, and 234 ± 133 nL O2/min, respectively, that is, to 58%, 46% and 60% of values obtained from normal fellow eyes (P < 0.004). OEF was 0.65 ± 0.23, 148% of normal (P = 0.03). Inner and total retinal thicknesses were 195 ± 24 and 293 ± 20 µm, respectively, 117% and 114% of normal, and inversely related to MO2 (P ≤ 0.02). These results reflect how much energy is available to the retina immediately after an interval of nonperfusion for 120 minutes. Thus, they elucidate aspects of the pathophysiology of nonperfusion retinal injury and may improve therapy in patients with retinal artery or ophthalmic artery obstructions.


Subject(s)
Arterial Occlusive Diseases/complications , Ophthalmic Artery/physiopathology , Retina/pathology , Retinal Artery/physiopathology , Retinal Diseases/etiology , Animals , Arterial Occlusive Diseases/physiopathology , Disease Models, Animal , Humans , Oxygen/metabolism , Oxygen Consumption , Rats , Regional Blood Flow , Retina/metabolism , Retinal Diseases/pathology , Retinal Diseases/physiopathology
4.
J Nanosci Nanotechnol ; 19(11): 7156-7162, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31039870

ABSTRACT

Highly flexible Cu nanowires were successfully synthesized by a dual-surfactant hydrothermal process using oleylamine and oleic acid. The ultra-long Cu nanowires have a mean diameter as low as 82.3 nm and lengths greater than 300 µm. It was found that reaction time and oleylamine concentration significantly influenced the morphology and phase composition of the Cu products. At a shorter reaction time (about 4 hours), pentagonal bipyramidal CU2O particles were precipitated together with the Cu nanowires. A longer reaction time of 12 hours resulted in smooth and purely metallic Cu nanowires. It is possible that CU2O served as an intermediate phase to control the activity of free CU2+ ions in the solution. On the other hand, a higher oleylamine concentration generally produced longer Cu nanowires. Cu nanowires conducting electrode with a sheet resistance of about 157.0 Ω/□ were fabricated. However, the optical transmittance of the electrode at 550 nm was very low (<20%) because of the agglomeration of the Cu nanowires. The addition of a small quantity of Ag nanowires in the Cu nanowire ink markedly improved the appearance and electrical properties of the resulting electrode.

5.
J Ophthalmol ; 2018: 1089043, 2018.
Article in English | MEDLINE | ID: mdl-30402277

ABSTRACT

PURPOSE: Diabetes is known to cause alterations in retinal microvasculature and tissue that progressively lead to visual impairment. Optical coherence tomography (OCT) is useful for assessment of total retinal thickening due to diabetic macular edema (DME). In the current study, we determined associations between visual acuity (VA) and retinal layer thickness, reflectance, and interface disruption derived from enface OCT images in subjects with and without DME. MATERIALS AND METHODS: Best corrected VA was measured and high-density OCT volume scans were acquired in 149 diabetic subjects. A previously established image segmentation method identified retinal layer interfaces and locations of visually indiscernible (disrupted) interfaces. Enface thickness maps and reflectance images of the nerve fiber layer (NFL), combined ganglion cell and inner plexiform layer (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE) were generated in the central macular subfield. The associations among VA and retinal layer metrics were determined by multivariate linear regressions after adjusting for covariates (age, sex, race, HbA1c, diabetes type, and duration) and correcting for multiple comparisons. RESULTS: In DME subjects, increased GCLIPL and OPL thickness and decreased OSL thickness were associated with reduced VA. Furthermore, increased NFL reflectance and decreased OSL reflectance were associated with reduced VA. Additionally, increased areas of INL and ONL interface disruptions were associated with reduced VA. In subjects without DME, increased INL thickness was associated with reduced VA, whereas in subjects without DME but with previous antivascular endothelium growth factor treatment, thickening of OPL was associated with reduced VA. CONCLUSIONS: Alterations in retinal layer thickness and reflectance metrics derived from enface OCT images were associated with reduced VA with and without presence of DME, suggestive of their potential for monitoring development, progression, and treatment of DME.

6.
Exp Eye Res ; 175: 207-211, 2018 10.
Article in English | MEDLINE | ID: mdl-30121195

ABSTRACT

Light flicker stimulation has been shown to increase inner retinal oxygen metabolism and supply. The purpose of the study was to test the hypothesis that sustained light flicker stimulation of various durations alters the depth profile metrics of oxygen partial pressure in the retinal tissue (tPO2) but not the outer retinal oxygen consumption rate (QO2). In 17 rats, tPO2 depth profiles were derived by phosphorescence lifetime imaging after intravitreal injection of an oxyphor. tPO2 profile metrics, including mean inner retinal tPO2, maximum outer retinal tPO2 and minimum outer retinal tPO2 were determined. QO2 was calculated using a one-dimensional oxygen diffusion model. Data were acquired at baseline (constant light illumination) and during light flicker stimulation at 10 Hz under the same mean illumination levels, and differences between values obtained during flicker and baseline were calculated. None of the tPO2 profile metrics or QO2 differences depended on the duration of light flicker stimulation (R2 ≤ 0.03). No significant change in any of the tPO2 profile metrics was detected with light flicker compared with constant light (P ≥ 0.08). Light flicker decreased QO2 from 0.53 ±â€¯0.29 to 0.38 ±â€¯0.30 mL O2/(min*100 gm), a reduction of 28% (P = 0.02). The retinal compensatory responses to the physiologic challenge of light flicker stimulation were effective in maintaining the levels of oxygen at or near baseline in the inner retina. Oxygen availability to the inner retina during light flicker may also have been enhanced by the decrease in QO2.


Subject(s)
Light , Oxygen Consumption/physiology , Oxygen/metabolism , Retina/metabolism , Retina/radiation effects , Animals , Male , Photic Stimulation , Rats , Rats, Long-Evans
7.
Transl Vis Sci Technol ; 7(3): 10, 2018 May.
Article in English | MEDLINE | ID: mdl-29881647

ABSTRACT

PURPOSE: Retinal ischemic injury depends on grade and duration of an ischemic insult. We developed a method to induce ischemic injury in rats permitting: (1) Variable grades of retinal blood flow (F) reduction, (2) controllable duration of F reduction, (3) injury without collateral neural damage, and (4) optical measurements of F and O2-related factors: O2 delivery (DO2), O2 extraction fraction (OEF), and metabolic rate of O2 (MO2). METHODS: In five anesthetized rats the left common carotid artery (CA) was ligated and the right CA was exposed. A variable clamp having a backstop and a rod mounted on a micromanipulator straddled the right CA. Advancing the rod with the micromanipulator produced graded compressions of the CA. F and O2-related factors were measured with established optical techniques. RESULTS: Four to seven grades of F for at least 10 minutes were achieved per rat. F decreased only with compressions of over 60%. DO2 changed in proportion to F, particularly at low F. As F decreased, OEF initially changed little, but then rose steeply to its maximum of 1 when F was approximately 4 µL/min. MO2 was stable with reduced F until OEF maximized, after which it decreased progressively. CONCLUSIONS: This model in rats permits acute, graded inner retinal ischemia that is reversible after prescribed durations, does not otherwise injure the eye and allows optical measurement of important physiologic factors during ischemia. TRANSLATIONAL RELEVANCE: This model will allow improved understanding of retinal ischemic injury and enable better management of this common, sight-threatening affliction.

8.
Sci Rep ; 7(1): 10622, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878307

ABSTRACT

The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO2) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO2) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO2) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO2 and tPO2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.


Subject(s)
Optical Imaging , Oxygen Consumption , Oxygen/metabolism , Retina/metabolism , Retinal Vessels/metabolism , Animals , Blood Gas Analysis , Models, Animal , Optical Imaging/instrumentation , Optical Imaging/methods , Partial Pressure , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...