Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Commun ; 15(1): 3896, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719899

ABSTRACT

As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.

2.
Cell Death Dis ; 14(2): 131, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36792890

ABSTRACT

The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.


Subject(s)
Ferroptosis , Animals , Oxidative Stress , Glutathione/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Heart , Reactive Oxygen Species/metabolism , Mammals
3.
Soft Matter ; 10(34): 6506-13, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25046698

ABSTRACT

The assemblies and transformations of dendritic polyethylene (DPE)-poly(oligo(ethyleneglycol) methacrylate) (POEGMA) amphiphilic micelles have been demonstrated by cryo-TEM and DLS techniques under elongation flow stimuli. The flow rate-dependence of the dissymmetry ratio suggests the possibility that a combination of shear and elongation could also be responsible for the transitions of DPE-POEGMAs, but it is obvious that the exposure of elongation flow is essential and plays a key role in the assembly and fusion of the DPE-POEGMA micelles. Fluorescence resonance energy transfer (FRET) is used to provide insight into the assembly and fusion of DPE-POEGMA under elongation flow. The FRET results show that a shorter separation distance of DiO-DiI with higher elongation rate can result in higher FRET efficiency. Furthermore, DPE-POEGMAs can display the responsive switching ability of the elongation flow-triggered FRET.

SELECTION OF CITATIONS
SEARCH DETAIL
...