Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
CPT Pharmacometrics Syst Pharmacol ; 13(2): 247-256, 2024 02.
Article in English | MEDLINE | ID: mdl-38130031

ABSTRACT

Proton pump inhibitors (PPIs) can affect the release of drugs from their dosage forms in vivo by elevating the gastric pH. Our recent clinical study has demonstrated that drug-drug interactions (DDIs) exist between a PPI, omeprazole, and nifedipine extended-release formulations, where systemic exposure of nifedipine was increased in subjects after multiple-dose pretreatment of omeprazole. However, the mechanism of the observed DDIs between omeprazole and nifedipine has not been well-understood, as the DDI may also be mediated through CYP3A4 enzyme inhibition in addition to the elevated gastric pH caused by omeprazole. This study used physiologically-based pharmacokinetic (PBPK) modeling and simulations to investigate the underlying mechanism of these complex DDIs. A formulation exhibiting differences in in vitro dissolution across physiological pH range and another formulation where pH does not impact dissolution appreciably (e.g., an osmotic pump) were chosen to characterize the potential impact of pH. The PBPK models incorporated two-stage in vitro release profiles via US Pharmacopeia 2 apparatus. PBPK simulations suggest that the elevated gastric pH following multiple-dose administration of omeprazole has a minimal effect on nifedipine pharmacokinetics (PKs), whereas CYP3A4-mediated DDI is likely the main driver to the observed change of nifedipine PKs in the presence of omeprazole. Compared to the osmotic formulation, the slightly increased exposure of nifedipine can be accounted for by the enhanced drug release in the pH-dependent formulation. The reported model-based approach may be useful in DDI risk assessments, product formulation designs, and bioequivalence evaluations.


Subject(s)
Nifedipine , Omeprazole , Humans , Nifedipine/chemistry , Nifedipine/pharmacokinetics , Omeprazole/pharmacology , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Drug Liberation , Administration, Oral
2.
Clin Pharmacol Ther ; 114(5): 1134-1141, 2023 11.
Article in English | MEDLINE | ID: mdl-37669218

ABSTRACT

Oral extended-release (ER) dosage forms have been used to sustain blood drug levels, reduce adverse events, and improve patient compliance. We investigated potential effects of comedication on pharmacokinetic exposure of nifedipine ER products with different formulation designs and manufacturing processes. A clinical study compared a generic version of nifedipine ER tablet with pH-dependent dissolution behavior with an osmotic pump product with pH independent drug release under fasting condition. In this study, two nifedipine tablet products were tested with or without short-term omeprazole comedication in healthy subjects. Seven-day administration of omeprazole before nifedipine dosing significantly increased the gastric pH, and subsequently increased the geometric least square (LS) means of area under the concentration-time curve from time zero to the last measurable timepoint (AUC0-t ) and maximum plasma concentration (Cmax ) of nifedipine to 132.6% (90% confidence interval (CI): 120.6-145.7%) and 112.8% (90% CI: 100.8-126.3%) for pH-dependent ER tablets, and 120.6% (90% CI: 109.7-132.5%) and 122.5% (90% CI: 113.7-131.9%) for the pH-independent ER tablets, respectively. Similar extent of increase in AUC0-t and Cmax was confirmed in the subpopulations whose gastric pH was ≥ 4 or ≤ 3 in subjects with or without omeprazole administration. Given that similar increases in drug exposures were observed for both pH-dependent and pH-independent nifedipine formulations and the geometric LS mean ratios were between 112% and 133% with and without short-term omeprazole comedication, the gastric pH may have limited effects on omeprazole-induced nifedipine PK changes on the tested formulations. The inhibition of cytochrome P450 3A4 activity may play a significant role causing nifedipine exposure changes for both formulations, which would warrant additional assessment.


Subject(s)
Nifedipine , Omeprazole , Humans , Omeprazole/pharmacokinetics , Nifedipine/adverse effects , Nifedipine/pharmacokinetics , Healthy Volunteers , Biological Availability , Tablets , Area Under Curve , Cross-Over Studies , Administration, Oral
3.
Mol Neurobiol ; 60(11): 6466-6475, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37460917

ABSTRACT

Vagus nerve stimulation (VNS) is a promising neuromodulation technique, which has been demonstrated to promote functional recovery after spinal cord injury (SCI) in our previous study. But the underlying mechanism remains to be explored. Using a compressed SCI model, our present study first demonstrated that activated microglia produce abundant tumor necrosis factor-α (TNF-α) to induce endothelial necroptosis via receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed lineage kinase domain-like protein (MLKL) pathway, thus destroying the blood-spinal cord barrier (BSCB) after SCI. While both TNF-α specifical antibody (infliximab) and necroptosis inhibitor (necrostatin-1) alleviate BSCB disruption. Then our study found that VNS significantly inhibits microglia-derived TNF-α production and reduces expression of p-RIP3 and p-MLKL in endothelial cells. As expected, further results indicated that VNS mitigates the BSCB disruption, thus reducing inflammatory cells infiltration and neural damage. Finally, both electrophysiological evaluation and locomotor test demonstrated that VNS promotes motor function recovery after SCI. In conclusion, our data demonstrated VNS restricts microglia-derived TNF-α to prevent RIP1/RIP3/MLKL mediated endothelial necroptosis, thus alleviating the decisive pathophysiological BSCB disruption to reduce neuroinflammation and neural damage, which ultimately promotes motor function recovery after SCI. Therefore, these results further elaborate that VNS might be a promising therapeutic strategy for SCI. Vagus nerve stimulation prevents microglia-derived TNF-α induced endothelial necroptosis to alleviate blood-spinal cord barrier disruption after spinal cord injury.


Subject(s)
Spinal Cord Injuries , Vagus Nerve Stimulation , Humans , Tumor Necrosis Factor-alpha , Necroptosis , Endothelial Cells/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/pathology
4.
Int J Pharm ; 642: 123183, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37369289

ABSTRACT

Identifying critical attributes for complex locally acting ophthalmic formulations and establishing in vitro-in vivo correlations can facilitate selection of appropriate thresholds for formulation changes that reflect lack of impact on in vivo performance. In this study the marketed antiglaucoma product Azopt® (1% brinzolamide suspension) and five other brinzolamide formulations varying in particle size distributions and apparent viscosities were topically administered in rabbits, and their ocular pharmacokinetics was determined in multiple ocular tissues. Statistical evaluation with ANOVA showed no significant differences between the formulations in the peak drug concentration (Cmax) in the aqueous humor and iris-ciliary body. As a post-hoc analysis, the within animal and total variability was determined for Cmax in the aqueous humor and iris-ciliary body. Based on the observed variability, we investigated the sample size needed for two types of study designs to observe statistically significant differences in Cmax. For the sample size calculations, assuming both 25% and 50% true differences in Cmax between two formulations, two study designs were compared: paired-eye dosing design (one formulation in one eye and another formulation in the other eye of the same animal at the same time) versus parallel-group design. The number of rabbits needed in the paired-eye dosing design are much lower than in the parallel-group design. For example, when the true difference in aqueous humor Cmax is 25%, nine rabbits are required in the paired-eye design versus seventy rabbits (35 per treatment) in the parallel-group design to observe a statistically significant difference with a power of 80%. Therefore, the proposed paired-eye dosing design is a viable option for the design of pharmacokinetic studies comparing ophthalmic products to determine the impact of formulation differences.


Subject(s)
Eye , Sulfonamides , Animals , Rabbits , Suspensions , Sample Size , Aqueous Humor , Ophthalmic Solutions
5.
Front Behav Neurosci ; 17: 1147693, 2023.
Article in English | MEDLINE | ID: mdl-37081929

ABSTRACT

Objective: Neuropathic pain is a common complication after spinal cord injury (SCI). Transcranial direct current stimulation (tDCS) has been confirmed to be effective in relieving neuropathic pain in patients with SCI. The aim of this study is to investigate the effect of tDCS on neuropathic pain induced by SCI and its underlying mechanism. Materials and methods: The SCI model was induced by a clip-compression injury and tDCS stimulation was performed for two courses (5 days/each). The motor function was evaluated by Basso-Beattie-Bresnahan (BBB) score, and the thermal withdrawal threshold was evaluated by the thermal radiation method. The effects of tDCS on the cerebral cortex, thalamus, midbrain, and medulla were detected by the enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Results: The results showed that SCI reduced the thermal withdrawal threshold and increased the concentration of inflammatory cytokines in the cortex, thalamus, midbrain, and medulla, including the tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In addition, the activation of microglia and the proportion of M1 phenotypic polarization increased significantly in the ventral posterolateral (VPL), ventral tegmental (VTA), and periaqueductal gray (PAG) regions after SCI. After tDCS treatment, the thermal withdrawal threshold and motor function of SCI rats were significantly improved compared to the vehicle group. Meanwhile, tDCS effectively reduced the concentration of pro-inflammatory cytokines in the cortex, thalamus, midbrain, and medulla and increased the concentration of anti-inflammatory cytokines interleukin-10 (IL-10) in the thalamus. In addition, tDCS reduced the proportion of the M1 phenotype of microglia in VPL, VTA, and PAG regions and increase the proportion of the M2 phenotype. Conclusion: The results suggest that tDCS can effectively relieve SCI-induced neuropathic pain. Its mechanism may be related to regulating the inflammatory and anti-inflammatory cytokines in corresponding brain regions via promoting the phenotypic transformation of microglia.

6.
Pharm Res ; 40(4): 961-975, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36959411

ABSTRACT

INTRODUCTION: Although the eye is directly accessible on the surface of the human body, drug delivery can be extremely challenging due to the presence of multiple protective barriers in eye tissues. Researchers have developed complex formulation strategies to overcome these barriers to ophthalmic drug delivery. Current development strategies rely heavily on in vitro experiments and animal testing to predict human pharmacokinetics (PK) and pharmacodynamics (PD). OBJECTIVE: The primary objective of the study was to develop a high-fidelity PK/PD model of the anterior eye for topical application of ophthalmic drug products. METHODS: Here, we present a physiologically-based in silico approach to predicting PK and PD in rabbits after topical administration of ophthalmic products. A first-principles based approach was used to describe timolol dissolution, transport, and distribution, including consideration of ionized transport, following topical instillation of a timolol suspension. RESULTS: Using literature transport and response parameters, the computational model described well the concentration-time and response-time profiles in rabbit. Comparison of validated rabbit model results and extrapolated human model results demonstrate observable differences in the distribution of timolol at multiple time points. CONCLUSION: This modeling framework provides a tool for model-based prediction of PK in eye tissues and PD after topical ophthalmic drug administration to the eyes.


Subject(s)
Eye , Timolol , Animals , Humans , Rabbits , Timolol/pharmacokinetics , Ophthalmic Solutions/pharmacokinetics , Cornea , Administration, Topical
7.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 631-638, 2023 05.
Article in English | MEDLINE | ID: mdl-36851886

ABSTRACT

For approval, a proposed generic drug product must demonstrate it is bioequivalent (BE) to the reference listed drug product. For locally acting drug products, conventional BE approaches may not be feasible because measurements in local tissues at the sites of action are often impractical, unethical, or cost-prohibitive. Mechanistic modeling approaches, such as physiologically-based pharmacokinetic (PBPK) modeling, may integrate information from drug product properties and human physiology to predict drug concentrations in these local tissues. This may allow clinical relevance determination of critical drug product attributes for BE assessment during the development of generic drug products. In this regard, the Office of Generic Drugs of the US Food and Drug Administration has recently established scientific research programs to accelerate the development and assessment of generic products by utilizing model-integrated alternative BE approaches. This report summarizes the presentations and panel discussion from a public workshop that provided research updates and information on the current state of the use of PBPK modeling approaches to support generic product development for ophthalmic, injectable, nasal, and implant drug products.


Subject(s)
Drugs, Generic , Research Report , Humans , Drugs, Generic/pharmacokinetics , Pharmaceutical Preparations , Therapeutic Equivalency
8.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 619-623, 2023 05.
Article in English | MEDLINE | ID: mdl-36631942

ABSTRACT

On September 30 and October 1, 2021, the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics cosponsored a live virtual workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The overall aims of the workshop included (i) engaging the generic drug industry and other involved stakeholders regarding how mechanistic modeling and simulation can support their product development and regulatory submissions; (ii) sharing the current state of mechanistic modeling for bioequivalence (BE) assessment through case studies; (iii) establishing a consensus on best practices for using mechanistic modeling approaches, such as physiologically based pharmacokinetic modeling and computational fluid dynamics modeling, for BE assessment; and (iv) introducing the concept of a Model Master File to improve model sharing between model developers, industry, and the FDA. More than 1500 people registered for the workshop. Based on a postworkshop survey, the majority of participants reported that their fundamental scientific understanding of mechanistic models was enhanced, there was greater consensus on model validation and verification, and regulatory expectations for mechanistic modeling submitted in abbreviated new drug applications were clarified by the workshop.


Subject(s)
Drugs, Generic , United States , Humans , Therapeutic Equivalency , Drugs, Generic/pharmacokinetics , Computer Simulation , United States Food and Drug Administration
9.
Pharm Res ; 40(2): 431-447, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36151444

ABSTRACT

BACKGROUND: The development of generic ophthalmic drug products is challenging due to the complexity of the ocular system, and a lack of sensitive testing to evaluate the interplay of physiology with ophthalmic formulations. While measurements of drug concentration at the site of action in humans are typically sparse, these measurements are more easily obtained in rabbits. The purpose of this study is to demonstrate the utility of an ocular physiologically based pharmacokinetic (PBPK) model for translation of ocular exposure from rabbit to human. METHOD: The Ocular Compartmental Absorption and Transit (OCAT™) model within GastroPlus® v9.8.2 was used to build PBPK models for levofloxacin (Lev), moxifloxacin (Mox), and gatifloxacin (Gat) ophthalmic solutions. in the rabbit eye. The models were subsequently used to predict Lev, Mox, and Gat exposure after ocular solution administrations in humans. Drug-specific parameters were used as fitted and validated in the rabbit OCAT model. The physiological parameters were scaled to match human ocular physiology. RESULTS: OCAT model simulations for rabbit well described the observed concentrations in the eye compartments following Lev, Mox, and Gat solution administrations of different doses and various administration schedules. The clinical ocular exposure following ocular administration of Lev, Mox, and Gat solutions at different doses and various administration schedules was well predicted. CONCLUSION: Even though additional case studies for different types of active pharmaceutical ingredients (APIs) and formulations will be needed, the current study represents an important step in the validation of the extrapolation method to predict human ocular exposure for ophthalmic drug products using PBPK models.


Subject(s)
Eye , Levofloxacin , Animals , Humans , Rabbits , Ophthalmic Solutions , Models, Biological
10.
Front Neurosci ; 16: 813472, 2022.
Article in English | MEDLINE | ID: mdl-35464311

ABSTRACT

Background: Spinal cord injury (SCI) is a devastating disease that lacks effective treatment. Interestingly, recent studies indicated that vagus nerve stimulation (VNS), neuromodulation that is widely used in a variety of central nervous system (CNS) diseases, improved motor function recovery after SCI. But the exact underlying mechanism of how VNS ameliorates SCI is unclear. This study aimed to confirm the efficacy and further explore the potential therapeutic mechanism of VNS in SCI. Method: A T10 spinal cord compression model was established in adult female Sprague-Dawley rats. Then the stimulation electrode was placed in the left cervical vagus nerve (forming Sham-VNS, VNS, and VNS-MLA groups). Basso-Beattie-Bresnahan (BBB) behavioral scores and Motor evoked potentials (MEPs) analysis were used to detect motor function. A combination of histological and molecular methods was used to clarify the relevant mechanism. Results: Compared with the Sham-VNS group, the VNS group exhibited better functional recovery, reduced scar formation (both glial and fibrotic scars), tissue damage, and dark neurons, but these beneficial effects of VNS were diminished after alpha 7 nicotinic acetylcholine receptor (α7nAchR) blockade. Specifically, VNS inhibited the pro-inflammatory factors TNF-α, IL-1ß, and IL-6 and increased the expression of the anti-inflammatory factors IL-10. Furthermore, we found that VNS promotes the shift of M1-polarized Iba-1+/CD86+ microglia to M2-polarized Iba-1+/CD206+ microglia via upregulating α7nAchR to alleviate neuroinflammation after SCI. Conclusion: Our results demonstrated that VNS promotes microglial M2 polarization through upregulating α7nAChR to reduce neuroinflammation, thus improving motor function recovery after SCI. These findings indicate VNS might be a promising neuromodulation strategy for SCI.

11.
Front Oncol ; 12: 840855, 2022.
Article in English | MEDLINE | ID: mdl-35372024

ABSTRACT

Objective: Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods: This was a randomized, sham-controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results: The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen's d =1.135) and week 3 (p=0.017, Cohen's d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion: Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.

12.
Article in English | MEDLINE | ID: mdl-35263438

ABSTRACT

Catheter-related thrombosis is a common complication caused by central venous catheters. Although right atrial thrombosis is uncommon, it may lead to life-threatening situations. Here, we report 2 cases of neonates with massive catheter-related right atrial thrombosis after congenital heart disease surgery. During therapeutic management, we attempted different treatments but failed to clear the mass. Finally, we found thrombectomy to be the most effective method for treating massive catheter-related right atrial thrombosis with favourable results.


Subject(s)
Catheterization, Central Venous , Central Venous Catheters , Heart Diseases , Thrombosis , Catheterization, Central Venous/adverse effects , Central Venous Catheters/adverse effects , Heart Atria/diagnostic imaging , Heart Atria/surgery , Heart Diseases/surgery , Humans , Infant, Newborn , Thrombosis/diagnostic imaging , Thrombosis/etiology , Thrombosis/surgery
13.
Redox Biol ; 43: 101984, 2021 07.
Article in English | MEDLINE | ID: mdl-33933882

ABSTRACT

Motor neuron death is supposed to result in primary motor cortex atrophy after spinal cord injury (SCI), which is relevant to poorer motor recovery for patients with SCI. However, the exact mechanisms of motor neuron death remain elusive. Here, we demonstrated that iron deposition in the motor cortex was significantly increased in both SCI patients and rats, which triggered the accumulation of lipid reactive oxygen species (ROS) and resulted in motor neuronal ferroptosis ultimately. While iron chelator, ROS inhibitor and ferroptosis inhibitor reduced iron overload-induced motor neuron death and promoted motor functional recovery. Further, we found that activated microglia in the motor cortex following SCI secreted abundant nitric oxide (NO), which regulated cellular iron homeostasis-related proteins to induce iron overload in motor neurons. Thus, we conclude that microglial activation induced iron overload in the motor cortex after SCI triggered motor neuronal ferroptosis and impeded motor functional recovery. These findings might provide novel therapeutic strategies for SCI.


Subject(s)
Ferroptosis , Iron Overload , Motor Cortex , Spinal Cord Injuries , Animals , Humans , Iron , Rats
14.
Front Neurosci ; 15: 640255, 2021.
Article in English | MEDLINE | ID: mdl-33897353

ABSTRACT

Although spinal cord injury (SCI) is the main cause of disability worldwide, there is still no definite and effective treatment method for this condition. Our previous clinical trials confirmed that the increased excitability of the motor cortex was related to the functional prognosis of patients with SCI. However, it remains unclear which cell types in the motor cortex lead to the later functional recovery. Herein, we applied optogenetic technology to selectively activate glutamate neurons in the primary motor cortex and explore whether activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI in rats and the preliminary neural mechanisms involved. Our results showed that the activation of glutamate neurons in the motor cortex could significantly improve the motor function scores in rats, effectively shorten the incubation period of motor evoked potentials and increase motor potentials' amplitude. In addition, hematoxylin-eosin staining and nerve fiber staining at the injured site showed that accurate activation of the primary motor cortex could effectively promote tissue recovery and neurofilament growth (GAP-43, NF) at the injured site of the spinal cord, while the content of some growth-related proteins (BDNF, NGF) at the injured site increased. These results suggested that selective activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI and may be of great significance for understanding the neural cell mechanism underlying functional recovery induced by motor cortex stimulation.

15.
Eur J Drug Metab Pharmacokinet ; 46(1): 41-51, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33064292

ABSTRACT

BACKGROUND AND OBJECTIVES: Proton pump inhibitors (PPIs) can affect the intragastric release of other drugs from their dosage forms by elevating the gastric pH. They may also influence drug absorption and metabolism by interacting with P-glycoprotein or with the cytochrome P450 (CYP) enzyme system. Nifedipine is a Biopharmaceutics Classification System (BCS) class II drug with low solubility across physiologic pH and high permeability. Previous studies have demonstrated that drug-drug interaction (DDI) existed between omeprazole and nifedipine with significantly increased systemic exposure of nifedipine in subjects after pre-treatment for 7 days with omeprazole compared to the subjects without omeprazole treatment. It was shown that omeprazole not only induced an increase in intragastric pH, but also inhibited the CYP3A4 activity, while CYP3A4-mediated oxidation is the main metabolic pathway of nifedipine. The purpose of this study is to apply a physiologically based pharmacokinetic (PBPK) modeling approach to investigate the DDI mechanism for an immediate release formulation of nifedipine with omeprazole. METHODS: A previously published model for omeprazole was modified to integrate metabolites and to update CYP inhibition based on the most updated published in vitro data. We simulated the nifedipine pharmacokinetics in healthy subjects with or without the multiple-dose pretreatment of omeprazole (20 mg) following oral administrations of immediate-release (IR) (10 mg) nifedipine. Nifedipine solubility at different pHs was used to simulate the nifedipine pharmacokinetics for both clinical arms. Multiple sensitivity analyses were performed to understand the impact of gastric pH and the CYP3A4-mediated gut and liver first pass metabolism on the overall nifedipine pharmacokinetics. RESULTS: The developed PBPK model properly described the pharmacokinetics of nifedipine and predicted the inhibitory effect of multiple-dose omeprazole on CYP3A4 activity. With the incorporation of the physiologic effect of omeprazole on both gastric pH and CYP3A4 to the PBPK model, the verified PBPK model allows evaluating the impact of the increase in gastric pH and/or CYP3A4 inhibition. The simulated results show that the nifedipine metabolic inhibition by omeprazole may play an important role in the DDI between nifedipine and omeprazole for IR nifedipine formulation. CONCLUSION: The developed full PBPK model with the capability to simulate DDI by considering gastric pH change and metabolic inhibition provides a mechanistic understanding of the observed DDI of nifedipine with a PPI, omeprazole.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Drug Interactions/physiology , Models, Biological , Nifedipine/pharmacokinetics , Omeprazole/pharmacokinetics , Proton Pump Inhibitors/pharmacokinetics , Calcium Channel Blockers/pharmacokinetics , Humans
16.
Pharm Res ; 37(12): 245, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33215336

ABSTRACT

PURPOSE: The purpose of this study is to show how the Ocular Compartmental Absorption & Transit (OCAT™) model in GastroPlus® can be used to characterize ocular drug pharmacokinetic performance in rabbits for ointment formulations. METHODS: A newly OCAT™ model developed for fluorometholone, as well as a previously verified model for dexamethasone, were used to characterize the aqueous humor (AH) concentration following the administration of multiple ointment formulations to rabbit. The model uses the following parameters: application surface area (SA), a fitted application time, and the fitted Higuchi release constant to characterize the rate of passage of the active pharmaceutical ingredient from the ointment formulations into the tears in vivo. RESULTS: Parameter sensitivity analysis was performed to understand the impact of ointment formulation changes on ocular exposure. While application time was found to have a significant impact on the time of maximal concentration in AH, both the application SA and the Higuchi release constant significantly influenced both the maximum concentration and the ocular exposure. CONCLUSIONS: This initial model for ointment ophthalmic formulations is a first step to better understand the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug pharmacokinetic performance in rabbits.


Subject(s)
Dexamethasone/pharmacokinetics , Eye/metabolism , Fluorometholone/pharmacokinetics , Glucocorticoids/pharmacokinetics , Models, Biological , Ocular Absorption , Administration, Ophthalmic , Animals , Aqueous Humor/metabolism , Computer Simulation , Dexamethasone/administration & dosage , Fluorometholone/administration & dosage , Glucocorticoids/administration & dosage , Ointments , Rabbits
17.
AAPS J ; 22(2): 26, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31907674

ABSTRACT

FDA's Orange Book lists 17 currently marketed active pharmaceutical ingredients (API) formulated within ophthalmic suspensions in which a majority has 90% or more of the API undissolved. We used an ocular physiologically based pharmacokinetic (O-PBPK) model to compare a suspension with a solution for ophthalmic products with dexamethasone (Dex) as the model drug. Simulations with a Dex suspension O-PBPK model previously verified in rabbit were used to characterize the consequences of drug clearance mechanism in the precorneal compartment on pharmacokinetic (PK) exposure and to assess the ocular and systemic PK characteristics of ophthalmic suspensions with different strengths or magnitudes of viscosity. O-PBPK-based simulations show that (1) Dex suspension 0.05% has a 2.5- and 5-fold higher AUC in aqueous humor and plasma, respectively, than the Dex saturated solution; (2) strength increase by 5- and 10-fold induces a respective 2.2- and 3.3-fold increase in aqueous humor and 4.4- and 8.6-fold increase in plasma Cmax and AUC; and (3) increasing formulation viscosity (from 1.6 to 75 cP) causes an overall increase in API available for absorption in the cornea resulting in a higher ocular Cmax and AUC with no significant impact on systemic exposure. This research demonstrates that solid particles present in a suspension can not only help to achieve a higher ocular exposure but also unfavorably raise systemic exposure. A model able to correlate formulation changes to both ocular and plasma exposure is a necessary tool to support ocular product development taking into consideration both local efficacy and systemic safety aspects.


Subject(s)
Dexamethasone/pharmacokinetics , Eye/metabolism , Glucocorticoids/pharmacokinetics , Models, Biological , Ocular Absorption , Administration, Ophthalmic , Animals , Aqueous Humor/metabolism , Dexamethasone/administration & dosage , Dexamethasone/toxicity , Drug Compounding , Glucocorticoids/administration & dosage , Glucocorticoids/toxicity , Ophthalmic Solutions , Rabbits , Tears/metabolism , Tissue Distribution , Toxicokinetics , Viscosity
18.
Clin Pharmacol Ther ; 105(3): 719-729, 2019 03.
Article in English | MEDLINE | ID: mdl-30074626

ABSTRACT

Chronic kidney disease (CKD) differentially affects the pharmacokinetics (PK) of nonrenally cleared drugs via certain pathways (e.g., cytochrome P450 (CYP)2D6); however, the effect on CYP2C8-mediated clearance is not well understood because of overlapping substrate specificity with hepatic organic anion-transporting polypeptides (OATPs). This study used physiologically based pharmacokinetic (PBPK) modeling to delineate potential changes in CYP2C8 or OATP1B activity in patients with CKD. Drugs analyzed are predominantly substrates of CYP2C8 (rosiglitazone and pioglitazone), OATP1B (pitavastatin), or both (repaglinide). Following initial model verification, pharmacokinetics (PK) of these drugs were simulated in patients with severe CKD considering changes in glomerular filtration rate (GFR), plasma protein binding, and activity of either CYP2C8 and/or OATP1B in a stepwise manner. The PBPK analysis suggests that OATP1B activity could be decreased up to 60% in severe CKD, whereas changes to CYP2C8 are negligible. This improved understanding of CKD effect on clearance pathways could be important to inform the optimal use of nonrenally eliminated drugs in patients with CKD.


Subject(s)
Cytochrome P-450 CYP2C8/metabolism , Hypoglycemic Agents/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , Liver/metabolism , Models, Biological , Renal Insufficiency, Chronic/metabolism , Adult , Aged , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Male , Metabolic Clearance Rate/drug effects , Metabolic Clearance Rate/physiology , Middle Aged , Renal Insufficiency, Chronic/drug therapy , Tissue Distribution/drug effects , Tissue Distribution/physiology
19.
Article in English | MEDLINE | ID: mdl-30047876

ABSTRACT

Intravascular ultrasound (IVUS) is an imaging modality used to visualize atherosclerosis from within the inner lumen of human arteries. Complex lesions like chronic total occlusions require forward-looking IVUS (FL-IVUS), instead of the conventional side-looking geometry. Volumetric imaging can be achieved with 2-D array transducers, which present major challenges in reducing cable count and device integration. In this work, we present an 80-element lead zirconium titanate matrix ultrasound transducer for FL-IVUS imaging with a front-end application-specific integrated circuit (ASIC) requiring only four cables. After investigating optimal transducer designs, we fabricated the matrix transducer consisting of 16 transmit (TX) and 64 receive (RX) elements arranged on top of an ASIC having an outer diameter of 1.5 mm and a central hole of 0.5 mm for a guidewire. We modeled the transducer using finite-element analysis and compared the simulation results to the values obtained through acoustic measurements. The TX elements showed uniform behavior with a center frequency of 14 MHz, a -3-dB bandwidth of 44%, and a transmit sensitivity of 0.4 kPa/V at 6 mm. The RX elements showed center frequency and bandwidth similar to the TX elements, with an estimated receive sensitivity of /Pa. We successfully acquired a 3-D FL image of three spherical reflectors in water using delay-and-sum beamforming and the coherence factor method. Full synthetic-aperture acquisition can be achieved with frame rates on the order of 100 Hz. The acoustic characterization and the initial imaging results show the potential of the proposed transducer to achieve 3-D FL-IVUS imaging.

20.
Clin Pharmacol Ther ; 103(5): 854-867, 2018 05.
Article in English | MEDLINE | ID: mdl-28990182

ABSTRACT

Our recent studies have shown that chronic kidney disease (CKD) affects the pharmacokinetics (PKs) of cytochrome P450 (CYP)2D6-metabolized drugs, whereas effects were less evident on CYP3A4/5. Therefore, the effect of CKD on the disposition of CYP1A2-metabolized, CYP2C8-metabolized, CYP2C9-metabolized, CYP2C19-metabolized, and organic anion-transporting polypeptide (OATP)-transported drugs was investigated. We identified dedicated CKD studies with 6, 5, 6, 4, and 12 "model" substrates for CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP, respectively. Our analyses suggest that clearance of OATP substrates decreases as kidney function declines. Similar trends were seen for CYP2C8; but overlap between some CYP2C8 and OATP substrates highlights that their interplay needs further investigation. In contrast, the effect of CKD on CYP1A2, CYP2C9, and CYP2C19 was variable and modest compared to CYP2C8 and OATP. This improved understanding of elimination-pathway-dependency in CKD is important to inform the need and conduct of PK studies in these patients for nonrenally eliminated drugs.


Subject(s)
Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2C9/genetics , Organic Anion Transporters/genetics , Renal Insufficiency, Chronic/genetics , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Renal Insufficiency, Chronic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...