Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Healthc Eng ; 2021: 8947433, 2021.
Article in English | MEDLINE | ID: mdl-34900206

ABSTRACT

While colour of red can play a significant role in altering human perception and performances, little is known about its perceptual-motor effect on running mechanics. This study examined the effects of variations in insole colours on impact forces, ankle kinematics, and trial-to-trial reliability at various running speeds. Sixteen male recreational runners ran on instrumented treadmill at slow (90%), preferred (100%), and fast (110%) running speeds when wearing insoles in red, blue, and white colours. We used synchronized force platform and motion capturing system to measure ground reaction force, ankle sagittal and frontal kinematics, and movement variability. A two-way (colour x speed) ANOVA with repeated measures was performed with Bonferroni adjusted post hoc comparisons, with alpha set at 0.05. Data analyses indicated that participants demonstrated higher impact and maximum loading rate of ground reaction force, longer stride length, shorter contact time, and smaller touchdown ankle inversion as well as larger ankle sagittal range of motion (RoM), but smaller frontal RoM in fast speed as compared with preferred (P < 0.05) and slow speeds (P < 0.001). Although insole colour had minimal effect on mean values of any tested variables (P > 0.05), participants wearing red-coloured orthoses showed higher coefficient of variation values for maximum loading rate than wearing blue insoles (P=0.009). These results suggest that running at faster speed would lead to higher impact loading and altered lower-limb mechanics and that colour used on the tops of insoles influences the wearers' movement repeatability, with implications for use of foot insole in running.


Subject(s)
Running , Shoes , Biomechanical Phenomena , Color , Humans , Male , Reproducibility of Results
2.
J Appl Biomech ; 37(1): 66-73, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33232937

ABSTRACT

This study examined the effect of foot orthoses used on ground reaction forces, ankle, and knee kinematics when running at preferred and nonpreferred speeds. Sixteen runners ran on instrumented treadmills at various speeds (90%, 100%, and 110% of preferred speed) when wearing arch-support and flat-control orthoses. Two-way repeated analysis of variance (ANOVA) was performed on the mean and coefficient of variation of all variables. Results indicated that arch-support orthoses experienced larger maximum loading rates than flat-control orthoses (P = .017, 95% CI, 2.22 to 19.53). Slower speed was related to smaller loading rates (preferred: P = .002, 95% CI, -17.02 to -4.20; faster: P = .003, 95% CI, -29.78 to -6.17), shorter stride length (preferred: P < .001, 95% CI, -0.204 to -0.090; faster: P < .001, 95% CI, -0.382 to -0.237), and longer contact time (preferred: P < .001, 95% CI, 0.006-0.021; faster: 95% CI, 0.012-0.042). In arch-support condition, preferred speed induced higher stride length coefficient of variation (P = .046, 95% CI, 0.035-1.117) than faster speed, while displaying no differences in flat-control condition. These findings suggest that the use of arch-support orthoses would influence impact loading, but not spatial-temporal and joint kinematics in recreational runners.


Subject(s)
Ankle/physiology , Foot Orthoses , Knee/physiology , Running/physiology , Adult , Biomechanical Phenomena , Humans , Male , Weight-Bearing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...