Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 2949, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592797

ABSTRACT

Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.


Subject(s)
Genome, Bacterial , Genomics , Streptococcal Infections/microbiology , Streptococcus gordonii/physiology , Streptococcus sanguis/physiology , Base Composition , Comparative Genomic Hybridization , Computational Biology/methods , Genome Size , Genomics/methods , Molecular Sequence Annotation , Phylogeny , Prophages/genetics , Streptococcus gordonii/virology , Streptococcus sanguis/virology , Virulence , Virulence Factors/genetics
2.
Sci Rep ; 6: 36116, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796355

ABSTRACT

On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Yersinia/genetics , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , CRISPR-Cas Systems/genetics , Humans , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Virulence/genetics , Yersinia/classification , Yersinia/pathogenicity , Yersinia Infections/microbiology , Yersinia Infections/pathology
3.
BMC Genomics ; 16: 755, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26444974

ABSTRACT

BACKGROUND: Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them. DESCRIPTION: With this motivation, we have developed ListeriaBase, a web Listeria genomic resource and analysis platform to facilitate comparative analysis of Listeria spp. ListeriaBase currently houses 850,402 protein-coding genes, 18,113 RNAs and 15,576 tRNAs from 285 genome sequences of different Listeria strains. An AJAX-based real time search system implemented in ListeriaBase facilitates searching of this huge genomic data. Our in-house designed comparative analysis tools such as Pairwise Genome Comparison (PGC) tool allowing comparison between two genomes, Pathogenomics Profiling Tool (PathoProT) for comparing the virulence genes, and ListeriaTree for phylogenic classification, were customized and incorporated in ListeriaBase facilitating comparative genomic analysis of Listeria spp. Interestingly, we identified a unique genomic feature in the L. monocytogenes genomes in our analysis. The Auto protein sequences of the serotype 4 and the non-serotype 4 strains of L. monocytogenes possessed unique sequence signatures that can differentiate the two groups. We propose that the aut gene may be a potential gene marker for differentiating the serotype 4 strains from other serotypes of L. monocytogenes. CONCLUSIONS: ListeriaBase is a useful resource and analysis platform that can facilitate comparative analysis of Listeria for the scientific communities. We have successfully demonstrated some key utilities of ListeriaBase. The knowledge that we obtained in the analyses of L. monocytogenes may be important for functional works of this human pathogen in future. ListeriaBase is currently available at http://listeria.um.edu.my .


Subject(s)
Genome, Bacterial , Listeria monocytogenes/genetics , Listeriosis/genetics , Phylogeny , Chromosome Mapping , Evolution, Molecular , Genetic Markers , Humans , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology
4.
PLoS One ; 9(1): e86318, 2014.
Article in English | MEDLINE | ID: mdl-24466021

ABSTRACT

Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/.


Subject(s)
Corynebacterium/genetics , Databases, Genetic , Genome, Bacterial/genetics , Genomics/methods , Humans , Internet , Search Engine , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...