Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 30(12): 3006-3023, 2018 12.
Article in English | MEDLINE | ID: mdl-30563848

ABSTRACT

The maize (Zea mays) mutant Unstable factor for orange1 (Ufo1) has been implicated in the epigenetic modifications of pericarp color1 (p1), which regulates the production of the flavonoid pigments phlobaphenes. Here, we show that the ufo1 gene maps to a genetically recalcitrant region near the centromere of chromosome 10. Transcriptome analysis of Ufo1-1 mutant and wild-type plants identified a candidate gene in the mapping region using a comparative sequence-based approach. The candidate gene, GRMZM2G053177, is overexpressed by >45-fold in multiple tissues of Ufo1-1, explaining the dominance of Ufo1-1 and its phenotypes. In the mutant stock, GRMZM2G053177 has a unique transcript originating within a CACTA transposon inserted in its first intron, and it is missing the first four codons of the wild-type transcript. GRMZM2G053177 expression is regulated by the DNA methylation status of the CACTA transposon, explaining the incomplete penetrance and poor expressivity of Ufo1-1 Transgenic overexpression lines of GRMZM2G053177 (Ufo1-1) phenocopy the p1-induced pigmentation in coleoptiles, tassels, leaf sheaths, husks, pericarps, and cob glumes. Transcriptome analysis of Ufo1 versus wild-type tissues revealed changes in several pathways related to abiotic and biotic stress. Thus, this study addresses the enigma of Ufo1 identity in maize, which had gone unsolved for more than 50 years.


Subject(s)
Plant Proteins/metabolism , Zea mays/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , DNA Transposable Elements/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Plant/genetics , Phenotype , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/genetics
2.
Molecules ; 20(2): 2388-404, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25647576

ABSTRACT

Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.


Subject(s)
Plant Leaves/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/genetics , Anthocyanins/metabolism , Colletotrichum/physiology , Disease Resistance , Flavonoids/metabolism , Host-Pathogen Interactions , Pigmentation , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/biosynthesis , Plants, Genetically Modified , Sorghum/genetics , Transcription Factors/biosynthesis , Zea mays/metabolism , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...