Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 25(22): 10663-10673, 2021 11.
Article in English | MEDLINE | ID: mdl-34698450

ABSTRACT

The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases. Here, the male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2 ) for 21 days to induce rat HPH model. PASMCs were treated with CoCl2 (200 µM) for 24 h to establish the HPH cell model. It was found that hypoxia up-regulated the expression of Cx43 and phosphorylation of Cx43 at Ser 368 in rat pulmonary arteries and PASMCs, and stimulated the proliferation and migration of PASMCs. HIF-1α inhibitor echinomycin attenuated the CoCl2 -induced Cx43 expression and phosphorylation of Cx43 at Ser 368 in PASMCs. The interaction between HIF-1α and Cx43 promotor was also identified using chromatin immunoprecipitation assay. Moreover, Cx43 specific blocker (37,43 Gap27) or knockdown of Cx43 efficiently alleviated the proliferation and migration of PASMCs under chemically induced hypoxia. Therefore, the results above suggest that HIF-1α, as an upstream regulator, promotes the expression of Cx43, and the HIF-1α/Cx43 axis regulates the proliferation and migration of PASMCs in HPH.


Subject(s)
Connexin 43/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Cell Proliferation , Cells, Cultured , Connexin 43/agonists , Connexin 43/genetics , Hypoxia/genetics , Hypoxia/metabolism , Immunohistochemistry , Models, Biological , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Rats
2.
Oncol Rep ; 45(4)2021 04.
Article in English | MEDLINE | ID: mdl-33649836

ABSTRACT

Glioblastoma is the most common and aggressive brain tumor and it is characterized by a high mortality rate. Temozolomide (TMZ) is an effective chemotherapy drug for glioblastoma, but the resistance to TMZ has come to represent a major clinical problem, and its underlying mechanism has yet to be elucidated. In the present study, the role of exosomal connexin 43 (Cx43) in the resistance of glioma cells to TMZ and cell migration was investigated. First, higher expression levels of Cx43 were detected in TMZ­resistant U251 (U251r) cells compared with those in TMZ­sensitive (U251s) cells. Exosomes from U251s or U251r cells (sExo and rExo, respectively) were isolated. It was found that the expression of Cx43 in rExo was notably higher compared with that in sExo, whereas treatment with rExo increased the expression of Cx43 in U251s cells. Additionally, exosomes stained with dioctadecyloxacarbocyanine (Dio) were used to visualized exosome uptake by glioma cells. It was observed that the uptake of Dio­stained rExo in U251s cells was more prominent compared with that of Dio­stained sExo, while 37,43Gap27, a gap junction mimetic peptide directed against Cx43, alleviated the rExo uptake by cells. Moreover, rExo increased the IC50 of U251s to TMZ, colony formation and Bcl­2 expression, but decreased Bax and cleaved caspase­3 expression in U251s cells. 37,43Gap27 efficiently inhibited these effects of rExo on U251s cells. Finally, the results of the wound healing and Transwell assays revealed that rExo significantly enhanced the migration of U251s cells, whereas 37,43Gap27 significantly attenuated rExo­induced cell migration. Taken together, these results indicate the crucial role of exosomal Cx43 in chemotherapy resistance and migration of glioma cells, and suggest that Cx43 may hold promise as a therapeutic target for glioblastoma in the future.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Connexin 43/metabolism , Glioma/drug therapy , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Drug Resistance, Neoplasm , Exosomes/metabolism , Glioma/pathology , Humans , Temozolomide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...