Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Heliyon ; 10(11): e31594, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845934

ABSTRACT

This review delves into the world of mushroom oils, highlighting their production, composition, and versatile applications. Despite mushrooms' overall low lipid content, their fatty acid composition, rich in essential fatty acids like linoleic acid and oleic acid, proves nutritionally significant. Variations in fatty acid profiles across mushroom species and the prevalence of unsaturated fats contribute to their cardiovascular health benefits. The exploration extends to mushroom essential oils, revealing diverse volatile compounds through extraction methods like hydrodistillation and solvent-assisted flavor evaporation (SAFE). The identification of 1-octen-3-ol as a key contributor to the distinct "mushroom flavor" adds a nuanced perspective. The focus broadens to applications, encompassing culinary and industrial uses with techniques like cold pressing and supercritical fluid extraction (SFE). Mushroom oils, with their unique nutritional and flavor profiles, enhance gastronomic experiences. Non-food applications in cosmetics and biofuels underscore the oils' versatility. The nutritional composition, enriched with essential fatty acids, bioactive compositions, and trace elements, is explored for potential health benefits. Bioactive compounds such as phenolic compounds and terpenes contribute to antioxidant and anti-inflammatory properties, positioning mushroom oils as nutritional powerhouses. In short, this concise review synthesizes the intricate world of mushroom oils, emphasizing their nutritional significance, extraction methodologies, and potential health benefits. The comprehensive overview underscores mushroom oils as a promising area for further exploration and utilization. The characteristics of mushroom biomass oil for the use in various industries are influenced by the mushroom species, chemical composition, biochemical synthesis of mushroom, and downstream processes including extraction, purification and characterization. Therefore, further research and exploration need to be done to achieve a circular bioeconomy with the integration of SDGs, waste reduction, and economic stimulation, to fully utilize the benefits of mushroom, a valuable gift of nature.

2.
Ren Fail ; 46(1): 2338484, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832469

ABSTRACT

Critically ill COVID-19 patients may exhibit various clinical symptoms of renal dysfunction including severe Acute Kidney Injury (AKI). Currently, there is a lack of bibliometric analyses on COVID-19-related AKI. The aim of this study is to provide an overview of the current research status and hot topics regarding COVID-19 AKI. The literature was retrieved from the Web of Science Core Collection (WoSCC) database. Subsequently, we utilized Microsoft Excel, VOSviewer, Citespace, and Pajek software to revealed the current research status, emerging topics, and developmental trends pertaining to COVID-19 AKI. This study encompassed a total of 1507 studies on COVID-19 AKI. The United States, China, and Italy emerged as the leading three countries in terms of publication numbers, contributing 498 (33.05%), 229 (15.20%), and 140 (9.29%) studies, respectively. The three most active and influential institutions include Huazhong University of Science and Technology, Wuhan University and Harvard Medical School. Ronco C from Italy, holds the record for the highest number of publications, with a total of 15 papers authored. Cheng YC's work from China has garnered the highest number of citations, totaling 470 citations. The co-occurrence analysis of author keywords reveals that 'mortality', 'intensive care units', 'chronic kidney disease', 'nephrology', 'renal transplantation', 'acute respiratory distress syndrome', and 'risk factors' emerge as the primary areas of focus within the realm of COVID-19 AKI. In summary, this study analyzes the research trends in the field of COVID-19 AKI, providing a reference for further exploration and research on COVID-19 AKI mechanisms and treatment.


Subject(s)
Acute Kidney Injury , Bibliometrics , COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Coronavirus Infections/epidemiology , Coronavirus Infections/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/complications , Italy/epidemiology , Betacoronavirus , China/epidemiology , Global Health
3.
Inflamm Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844677

ABSTRACT

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

4.
Biomed Pharmacother ; 176: 116922, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870627

ABSTRACT

The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.

5.
Front Oncol ; 14: 1401977, 2024.
Article in English | MEDLINE | ID: mdl-38803534

ABSTRACT

Background: Accurate preoperative prediction of glioma is crucial for developing individualized treatment decisions and assessing prognosis. In this study, we aimed to establish and evaluate the value of integrated models by incorporating the intratumoral and peritumoral features from conventional MRI and clinical characteristics in the prediction of glioma grade. Methods: A total of 213 glioma patients from two centers were included in the retrospective analysis, among which, 132 patients were classified as the training cohort and internal validation set, and the remaining 81 patients were zoned as the independent external testing cohort. A total of 7728 features were extracted from MRI sequences and various volumes of interest (VOIs). After feature selection, 30 radiomic models depended on five sets of machine learning classifiers, different MRI sequences, and four different combinations of predictive feature sources, including features from the intratumoral region only, features from the peritumoral edema region only, features from the fusion area including intratumoral and peritumoral edema region (VOI-fusion), and features from the intratumoral region with the addition of features from peritumoral edema region (feature-fusion), were established to select the optimal model. A nomogram based on the clinical parameter and optimal radiomic model was constructed for predicting glioma grade in clinical practice. Results: The intratumoral radiomic models based on contrast-enhanced T1-weighted and T2-flair sequences outperformed those based on a single MRI sequence. Moreover, the internal validation and independent external test underscored that the XGBoost machine learning classifier, incorporating features extracted from VOI-fusion, showed superior predictive efficiency in differentiating between low-grade gliomas (LGG) and high-grade gliomas (HGG), with an AUC of 0.805 in the external test. The radiomic models of VOI-fusion yielded higher prediction efficiency than those of feature-fusion. Additionally, the developed nomogram presented an optimal predictive efficacy with an AUC of 0.825 in the testing cohort. Conclusion: This study systematically investigated the effect of intratumoral and peritumoral radiomics to predict glioma grading with conventional MRI. The optimal model was the XGBoost classifier coupled radiomic model based on VOI-fusion. The radiomic models that depended on VOI-fusion outperformed those that depended on feature-fusion, suggesting that peritumoral features should be rationally utilized in radiomic studies.

6.
Adv Healthc Mater ; : e2400624, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782037

ABSTRACT

Electrical stimulation (ES) has a remarkable capacity to regulate neuronal differentiation and neurogenesis in the treatment of various neurological diseases. However, wired devices connected to the stimulating electrode and the mechanical mismatch between conventional rigid electrodes and soft tissues restrict their motion and cause possible infections, thereby limiting their clinical utility. An approach integrating the advantages of wireless techniques and soft hydrogels provides new insights into ES-induced nerve regeneration. Herein, a flexible and implantable wireless ES-responsive electrode based on an annular gelatin methacrylate-polyaniline (Gel/Pani) hydrogel is fabricated and used as a secondary coil to achieve wireless ES via electromagnetic induction in the presence of a primary coil. The Gel/Pani hydrogels exhibit favorable biocompatibility, biodegradability, conductivity, and compression resistance. The annular electrode of the Gel/Pani conductive hydrogel (AECH) supports neural stem cell growth, while the applied wireless ES facilitates neuronal differentiation and the formation of functional neural networks in vitro. Furthermore, AECH is implanted in vivo in rats with ischemic stroke and the results reveal that AECH-mediated wireless ES significantly ameliorates brain impairment and neurological function by activating endogenous neurogenesis. This novel flexible hydrogel system addresses wireless stimulation and implantable technical challenges, holding great potential for the treatment of neurodegenerative diseases.

7.
J Colloid Interface Sci ; 669: 14-22, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38703577

ABSTRACT

Single-atom catalysts (SACs), due to their maximum atomic utilization rate, show tremendous potential for application in the electrocatalytic synthesis of ammonia from nitrate. Yet, the development of superior supports that preserve the high selectivity, activity, and stability of SACs remains an imperative challenge. In this work, based on first-principles calculations and tight-binding (TB) model analysis, a new two-dimensional (2D) carbon nitride monolayer, C7N6, is proposed. The C7N6 structure exhibits a strong covalent network, with dynamical, thermal, and mechanical stability. Surprisingly, the structural transition from C9N4 to C7N6 corresponds to a semimetallic state transition. Further symmetry analysis unveils that the Dirac states in C7N6 are protected by space-time inversion symmetry, and the physical origin of the Dirac cone was confirmed using the TB model. Additionally, a non-zero Z2 invariant and significant topological edge states demonstrate its topologically nontrivial nature. Considering the excellent structural and topological properties of C7N6, a three-step screening strategy is designed to identify eligible SACs for electrochemical nitrate reduction reaction (NO3RR), and Ti@C7N6 is identified as possessing the best activity, with the last proton-electron coupling step *NH2→*NH3 being the potential-determining step (PDS), for which the limiting potential is 0.48 V. Moreover, a free energy diagram shows that the *NOH reaction pathway is energetically preferred on Ti@C7N6, and ab initio molecular dynamics (AIMD) calculations at 500 K confirm its good thermal stability. Our study not only provides excellent CN-based support material but also offers theoretical guidance for constructing highly active and selective SACs for nitrate reduction.

8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2273-2280, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812127

ABSTRACT

Small nucleic acid drugs mainly include small interfering RNA(siRNA), antisense oligonucleotide(ASO), microRNA(miRNA), messenger RNA(mRNA), nucleic acid aptamer(aptamer), and so on. Its translation or regulation can be inhibited by binding to the RNA of the target molecule. Due to its strong specificity, persistence, and curability, small nucleic acid drugs have received considerable attention in recent years. Recent studies have shown that some miRNAs from animal and plant sources can stably exist in the blood, tissue, and organs of animals and human beings and exert pharmacological action by regulating the expression of various target proteins. This paper summarized the discovery of small nucleic acids derived from traditional Chinese medicine(TCM) and natural drugs and their cross-border regulatory mechanisms and discussed the technical challenges and regulatory issues brought by this new drug, which can provide new ideas and methods for explaining the complex mechanism of TCM, developing new drugs of small nucleic acids from TCM and natural medicine, and conducting regulatory scientific research.


Subject(s)
Drug Discovery , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , MicroRNAs/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , Nucleic Acids/chemistry
9.
Brain Res ; 1838: 149011, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763502

ABSTRACT

Spinal Cord Injury (SCI) is a debilitating disease associated with a significant economic burden owing to its high level of disability; however, current treatment options have only limited efficacy. Past research has shown that iron-dependent programmed cell death, also known as ferroptosis, plays a critical role in the pathogenesis of SCI. The sigma-1 receptor (Sig-1R) is widely distributed in the central nervous system, and has been implicated in the pathophysiology of several neurological and psychiatric disorders. Several in vivo and ex vivo studies have shown that Sig-1R activation exerts unique neuroprotective effects. However, the underlying mechanisms remain unclear. To date, no study has yet demonstrated the association between Sig-1R activation and ferroptosis in patients with SCI. However, the present study found that Sig-1R activation effectively promoted the recovery of motor function in mice after spinal cord injury, attenuated neuronal apoptosis, reduced the production of pro-inflammatory cytokines and iron accumulation, and inhibited ferroptosis in spinal cord tissues following SCI in mice. Ferroptosis and IRE1α were significantly upregulated after spinal cord injury, while sigma-1 receptor agonists were able to facilitate this result through the elimination of inositol-requiring enzyme-1 alpha (IRE1α)-mediated neuronal ferroptosis. Therefore, sigma-1 receptor activation could attenuate ferroptosis after SCI by reducing IRE1α and improving functional recovery after SCI, potentially representing a new therapeutic strategy for treating SCI.


Subject(s)
Ferroptosis , Mice, Inbred C57BL , Neurons , Protein Serine-Threonine Kinases , Receptors, sigma , Sigma-1 Receptor , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Animals , Receptors, sigma/metabolism , Receptors, sigma/agonists , Ferroptosis/physiology , Ferroptosis/drug effects , Mice , Protein Serine-Threonine Kinases/metabolism , Neurons/metabolism , Endoribonucleases/metabolism , Male , Recovery of Function/physiology , Recovery of Function/drug effects , Apoptosis/physiology , Apoptosis/drug effects , Spinal Cord/metabolism
10.
Sci Total Environ ; 933: 172994, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38719033

ABSTRACT

Submicron particulate matter (PM1) poses significant risks to health risks and global climate. In this study, secondary organic aerosols (SOA) and inorganic compositions were examined for their physicochemical characteristics and evolution using high-resolution aerosol instruments in Changzhou over one-month period. The results showed that transport accompanied by regional static conditions leaded to the occurrence of heavy pollution. In addition, regional generation and local emissions also leaded to the occurrence of light and moderate pollution during the observation period in Changzhou. Organic aerosols (OA) and nitrate (NO3-) accounted for 45 % and 23 % of PM1, respectively. The increase in PM1 was dominated by the contribution of NO3- and OA. SOA was dominance in OA (63 % with 40 % MO-OOA), which was higher than primary organic aerosols (POA). Besides, photochemical reactions and the high oxidizing nature of the urban atmosphere promoted the production of OA, especially MO-OOA in Changzhou. Our results highlight that secondary particles contribute significantly to PM pollution in Changzhou, underlining the importance of controlling emissions of gaseous precursors, especially under high oxidation conditions.

11.
Small Methods ; : e2400158, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745530

ABSTRACT

Water electrolysis, a key enabler of hydrogen energy production, presents significant potential as a strategy for achieving net-zero emissions. However, the widespread deployment of water electrolysis is currently limited by the high-cost and scarce noble metal electrocatalysts in hydrogen evolution reaction (HER). Given this challenge, design and synthesis of cost-effective and high-performance alternative catalysts have become a research focus, which necessitates insightful understandings of HER fundamentals and material engineering strategies. Distinct from typical reviews that concentrate only on the summary of recent catalyst materials, this review article shifts focus to material engineering strategies for developing efficient HER catalysts. In-depth analysis of key material design approaches for HER catalysts, such as doping, vacancy defect creation, phase engineering, and metal-support engineering, are illustrated along with typical research cases. A special emphasis is placed on designing noble metal-free catalysts with a brief discussion on recent advancements in electrocatalytic water-splitting technology. The article also delves into important descriptors, reliable evaluation parameters and characterization techniques, aiming to link the fundamental mechanisms of HER with its catalytic performance. In conclusion, it explores future trends in HER catalysts by integrating theoretical, experimental and industrial perspectives, while acknowledging the challenges that remain.

12.
Dis Model Mech ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616731

ABSTRACT

Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a ß-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in ß-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant ß-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and ß-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-ß-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of ß-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.

13.
Phys Chem Chem Phys ; 26(15): 11782-11788, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38566583

ABSTRACT

Two-dimensional (2D) carbon nitride materials have emerged as a versatile platform for the design of high-performance nanoelectronics, but strong anisotropy in 2D carbon nitrides has rarely been reported. In this work, a 2D carbon nitride with strong anisotropy composed of tetra-, penta-, and hexa-rings (named as TPH-C5N3) is proposed. This TPH-C5N3 exhibits both dynamical and mechanical stability. Furthermore, it also showcases remarkable thermal stability, reaching up to 2300 K, as evidenced by AIMD simulations conducted in an NVT environment utilizing the Nosé-Hoover thermostat. Significantly, TPH-C5N3 demonstrates high anisotropic ratios in its mechanical properties, positioning it as the frontrunner in the current carbon nitride systems. In addition, a Dirac cone with an anisotropic ratio of 55.8% and Fermi velocity of 7.26 × 105 m s-1 is revealed in TPH-C5N3. The nontrivial topological properties of TPH-C5N3 are demonstrated by a non-zero Z2 invariant and topologically protected edge states. Our study offers theoretical insights into an anisotropic 2D carbon nitride material, laying the groundwork for its design and synthesis.

14.
J Colloid Interface Sci ; 667: 679-687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670011

ABSTRACT

The development ofhighly efficient oxygen evolution reaction (OER) catalysts based on more cost-effective and earth-abundant elements is of great significance and still faces a huge challenge. In this work, a series of transition metal (TM)embedding a newly-defined monolayer carbon nitride phase is theoretically profiled and constructed as a catalytic platform for OER studies. Typically, a four-step screening strategy was proposed to rapidly identified high performance candidates and the coordination structure and catalytic performance relationship was thoroughly analyzed. Moreover, the eliminating criterion was established to condenses valid range based on the Gibbs free energy of OH*. Our results reveal that the as-constructed 2FeCN/P exhibits superior activity toward OER with an ultralow overpotential of 0.25 V, at the same time, the established 3FeCN/S configuration performed well as abifunctional OER/ORR electrocatalysis with extremely low overpotential ηOER/ηORR of 0.26/0.48 V. Overall, this work provides an effective framework for screening advanced OER catalysts, which can also be extended to other complex multistep catalytic reactions.

15.
Microvasc Res ; 154: 104681, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38493885

ABSTRACT

BACKGROUND: Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS: ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS: Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION: During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.


Subject(s)
Baroreflex , Blood Platelets , Blood-Brain Barrier , CD40 Ligand , Capillary Permeability , Disease Models, Animal , Endothelial Cells , Matrix Metalloproteinase 9 , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/pathology , Blood Platelets/metabolism , Male , Endothelial Cells/metabolism , CD40 Ligand/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Zonula Occludens-1 Protein/metabolism , Occludin/metabolism , Cell Line , Platelet Aggregation , Arterial Pressure , Rats
16.
Sci Total Environ ; 925: 171366, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38438049

ABSTRACT

As a stepped cross section of farmland built along the contour lines, terrace is widely distributed on hill-slopes. It changes the original surface slope and runoff coefficient, reduces soil nutrient loss, and has become the most important soil erosion control measure in China. Accurate terrace mapping at regional scale is crucial for soil conservation, agriculture sustainability and ecological planning. Due to the influence of cloudy and rainy weather, poor data availability makes it difficult to identify terrace distribution only using optical remote sensing images in mountainous areas. In this study, we incorporated multi-spectral optical and SAR data, features of terrain, texture and time sequence information, and proposed a pixel-based supervised classification method based on sample purification strategy to obtain a 10 m resolution terraced map in a plateau mountainous region. With 610 terrace/non-terrace validation sample data, 10-fold cross-validation was used to test the classification results. For identified terrace, the values of Overall Accuracy (OA), Producer's Accuracy (PA) and User's Accuracy (UA) stay stable above 90 %, the F1 score and Kappa coefficient show the smallest fluctuation and is stable in the range of 0.90-0.93 and 0.81-0.87, respectively. The accuracy evaluation of grid units show that the uncertainty of the terrace distribution is mainly concentrated in the north and south of the study area. Slope cultivated land, low-slope terrace and non-agricultural vegetation are easily mixed due to the heterogeneity of terrace features and the spectrum similarity among these land types. It should be noted that the features of time series and texture play a key role in the terrace recognition process, rather than terrain factors, which is different from previous studies. The sample purification strategy proposed provides a more reliable regional scale terrace distribution map compared to the existing product, and is potentially transferable to other mountainous areas as a robust approach for rapid identification of terrace.

17.
Brain Res ; 1832: 148843, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38430996

ABSTRACT

BACKGROUND: Chronic pain is linked to cognitive impairment; however, the underlying mechanisms remain unclear. In the present study, we examined these mechanisms in a well-established mouse model of Alzheimer's disease (AD). METHODS: Neuropathic pain was modeled in 5-month-old transgenic APPswe/PS1dE9 (APP/PS1) mice by partial ligation of the sciatic nerve on the left side, and chronic inflammatory pain was modeled in another group of APP/PS1 mice by injecting them with complete Freund's adjuvant on the plantar surface of the left hind paw. Six weeks after molding, the animals were tested to assess pain threshold (von Frey filament), learning, memory (novel object recognition, Morris water maze, Y-maze, and passive avoidance), and depression-like symptoms (sucrose preference, tail suspension, and forced swimming). After behavioral testing, mice were sacrificed and the levels of p65, amyloid-ß (residues 1-42) and phospho-tau in the hippocampus and cerebral cortex were assayed using western blotting, while interleukin (IL)-1ß levels were measured by enzyme-linked immunosorbent assay. RESULTS: Animals subjected to either type of chronic pain showed lower pain thresholds, more severe deficits in learning and memory, and stronger depression-like symptoms than the corresponding control animals. Either type of chronic pain was associated with upregulation of p65, amyloid-ß (1-42), and IL-1ß in the hippocampus and cerebral cortex, as well as higher levels of phosphorylated tau. CONCLUSIONS: Chronic pain may exacerbate cognitive deficits and depression-like symptoms in APP/PS1 mice by worsening pathology related to amyloid-ß and tau and by upregulating signaling involving IL-1ß and p65.


Subject(s)
Alzheimer Disease , Chronic Pain , Animals , Mice , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Disease Models, Animal , Maze Learning , Memory Disorders/etiology , Mice, Transgenic , Presenilin-1/genetics
18.
Public Health Nutr ; 27(1): e85, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418286

ABSTRACT

OBJECTIVE: Although some studies have examined the association between eating behaviour and elevated blood pressure (EBP) in adolescents, current data on the association between sugar-sweetened beverages (SSB) and EBP in adolescents in Yunnan Province, China, are lacking. SETTING: Cluster sampling was used to survey freshmen at a college in Kunming, Yunnan Province, from November to December. Data on SSB consumption were collected using an FFQ measuring height, weight and blood pressure. A logistic regression model was used to analyse the association between SSB consumption and EBP, encompassing prehypertension and hypertension with sex-specific analyses. PARTICIPANTS: The analysis included 4781 college students. RESULTS: Elevated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were detected in 35·10 % (1678/4781) and 39·34 % (1881/4781) of patients, respectively. After adjusting for confounding variables, tea beverage consumption was associated with elevated SBP (OR = 1·24, 95 % CI: 1·03, 1·49, P = 0·024), and carbonated beverage (OR = 1·23, 95 % CI: 1·04, 1·45, P = 0·019) and milk beverage (OR = 0·81, 95 % CI: 0·69, 0·95, P = 0·010) consumption was associated with elevated DBP in college students. Moreover, fruit beverage (OR = 1·32, 95 % CI: 1·00, 1·75, P = 0·048) and milk beverage consumption (OR = 0·69, 95 % CI: 0·52, 0·93, P = 0·014) was associated with elevated DBP in males. CONCLUSION: Our findings indicated that fruit and milk beverage consumption was associated with elevated DBP in males, and no association was observed with EBP in females.


Subject(s)
Hypertension , Sugar-Sweetened Beverages , Male , Female , Adolescent , Humans , Sugar-Sweetened Beverages/adverse effects , Blood Pressure , Dietary Sucrose/adverse effects , China/epidemiology , Beverages , Carbonated Beverages , Hypertension/epidemiology , Hypertension/etiology , Students
19.
Front Cell Dev Biol ; 12: 1343894, 2024.
Article in English | MEDLINE | ID: mdl-38389703

ABSTRACT

Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.

20.
Phys Chem Chem Phys ; 26(7): 6292-6299, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305764

ABSTRACT

Two-dimensional material-supported single metal atom catalysts have been extensively studied and proved effective in electrocatalytic reactions in recent years. In this work, we systematically investigate the OER catalytic properties of single metal atoms supported by the NiN2 monolayer. Several typical transition metals with high single atom catalytic activity, such as Fe, Co, Ru, Rh, Pd, Ir, and Pt, were selected as catalytic active sites. The energy calculations show that transition metal atoms (Fe, Co, Ru, Rh, Pd, Ir, and Pt) are easily embedded in the NiN2 monolayer with Ni vacancies due to the negative binding energy. The calculated OER overpotentials of Fe, Co, Ru, Rh, Pd, Ir and Pt embedded NiN2 monolayers are 0.92 V, 0.47 V, 1.13 V, 0.66 V, 1.25 V, 0.28 V, and 0.94 V, respectively. Compared to the 0.57 V OER overpotential of typical OER noble metal catalysts IrO2, Co@NiN2 and Ir@NiN2 exhibit high OER catalytic activity due to lower overpotential, especially for Ir@NiN2. The high catalytic activity of the Ir embedded NiN2 monolayer can be explained well by the d-band center model. It is found that the adsorption strength of the embedded TM atoms with intermediates follows a linear relationship with their d-band centers. Besides, the overpotential of the Ir embedded NiN2 monolayer can be further reduced to 0.24 V under -2% biaxial strain. Such findings are expected to be employed in more two-dimensional material-supported single metal atom catalyzed reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...