Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxf Med Case Reports ; 2023(10): omad113, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881272
2.
Proteome Sci ; 21(1): 18, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833721

ABSTRACT

BACKGROUND: End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited. METHODS: In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls. RESULTS: On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered. CONCLUSIONS: These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.

3.
J Atheroscler Thromb ; 25(3): 244-253, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28867683

ABSTRACT

AIMS: Atherosclerosis is the most common cause of cardiovascular disease, such as myocardial infarction and stroke. Previous study revealed that microRNA (miR)-134 promotes lipid accumulation and proinflammatory cytokine secretion through angiopoietin-like 4 (ANGPTL4)/lipid lipoprotein (LPL) signaling in THP-1 macrophages. METHODS: ApoE KO male mice on a C57BL/6 background were fed a high-fat/high-cholesterol Western diet, from 8 to 16 weeks of age. Mice were divided into four groups, and received a tail vein injection of miR-134 agomir, miR-134 antagomir, or one of the corresponding controls, respectively, once every 2 weeks after starting the Western diet. After 8 weeks we measured aortic atherosclerosis, LPL Activity, mRNA and protein levels of ANGPTL4 and LPL, LPL/ low-density lipoprotein receptor related protein 1 Complex Formation, proinflammatory cytokine secretion and lipid levels. RESULTS: Despite this finding, the influence of miR-134 on atherosclerosis in vivo remains to be determined. Using the well-characterized mouse atherosclerosis model of apolipoprotein E knockout, we found that systemic delivery of miR-134 agomir markedly enhanced the atherosclerotic lesion size, together with a significant increase in proinflammatory cytokine secretion and peritoneal macrophages lipid contents. Moreover, overexpression of miR-134 decreased ANGPTL4 expression but increased LPL expression and activity in both aortic tissues and peritoneal macrophages, which was accompanied by increased formation of LPL/low-density lipoprotein receptor-related protein 1 complexes in peritoneal macrophages. However, an opposite effect was observed in response to miR-134 antagomir. CONCLUSIONS: These findings suggest that miR-134 accelerates atherogenesis by promoting lipid accumulation and proinflammatory cytokine secretion via the ANGPTL4/LPL pathway. Therefore, targeting miR-134 may offer a promising strategy for the prevention and treatment of atherosclerotic cardiovascular disease.


Subject(s)
Angiopoietin-Like Protein 4/blood , Angiopoietin-Like Protein 4/genetics , Atherosclerosis/genetics , MicroRNAs/blood , MicroRNAs/genetics , Animals , Atherosclerosis/metabolism , Cholesterol/metabolism , Cytokines/metabolism , Foam Cells/metabolism , Inflammation , Lipids/chemistry , Lipoprotein Lipase/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL
...