Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12418, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816453

ABSTRACT

Body core temperature (Tc) monitoring is crucial for minimizing heat injury risk. However, validated strategies are invasive and expensive. Although promising, aural canal temperature (Tac) is susceptible to environmental influences. This study investigated whether incorporation of external auricle temperature (Tea) into an ear-based Tc algorithm enhances its accuracy during multiple heat stress conditions. Twenty males (mean ± SD; age = 25 ± 3 years, BMI = 21.7 ± 1.8, body fat = 12 ± 3%, maximal aerobic capacity (VO2max) = 64 ± 7 ml/kg/min) donned an ear-based wearable and performed a passive heating (PAH), running (RUN) and brisk walking trial (WALK). PAH comprised of immersion in hot water (42.0 ± 0.3 °C). RUN (70 ± 3%VO2max) and WALK (50 ± 10%VO2max) were conducted in an environmental chamber (Tdb = 30.0 ± 0.2 °C, RH = 71 ± 2%). Several Tc models, developed using Tac, Tea and heart rate, were validated against gastrointestinal temperature. Inclusion of Tea as a model input improved the accuracy of the ear-based Tc algorithm. Our best performing model (Trf3) displayed good group prediction errors (mean bias error = - 0.02 ± 0.26 °C) but exhibited individual prediction errors (percentage target attainment ± 0.40 °C = 88%) that marginally exceeded our validity criterion. Therefore, Trf3 demonstrates potential utility for group-based Tc monitoring, with additional refinement needed to extend its applicability to personalized heat strain monitoring.


Subject(s)
Body Temperature , Ear Auricle , Hot Temperature , Wearable Electronic Devices , Humans , Male , Adult , Body Temperature/physiology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Ear Auricle/physiology , Young Adult , Heart Rate/physiology , Algorithms
2.
Med Sci Sports Exerc ; 54(11): 1925-1935, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35787594

ABSTRACT

PURPOSE: We compared the effectiveness of three field-based training programs, namely military-based heat acclimatization (MHA), isothermic conditioning (IC) and interval training (IT), in inducing physiological adaptations in tropical natives. METHODS: Fifty-one untrained tropical native males (mean ± standard deviation: age, 25 ± 2 yr; body mass index, 23.6 ± 3.2 kg·m -2 ; body fat, 19% ± 5%; 2.4-km run time, 13.2 ± 0.9 min) donned the Full Battle Order attire (22 kg) and performed a treadmill route march heat stress test in an environmental chamber (dry bulb temperature, 29.9°C ± 0.5°C; relative humidity, 70% ± 3%). Heat stress tests were conducted before (PRE) and after (POST) a 2-wk training intervention consisting of either a MHA ( n = 17, 10 sessions of military-based heat acclimatization), IC ( n = 17, 10 sessions with target gastrointestinal temperature ( Tgi ) ≥ 38.5°C) or IT ( n = 17, six sessions of high-intensity interval training) program. Tgi , HR, mean weighted skin temperature ( Tsk ), physiological strain index (PSI) and thigh-predicted sweat sodium concentration ([Na + ]) were measured and analyzed by one-factor and two-factor mixed design ANOVA with a 0.05 level of significance. RESULTS: Field-based IC induced a greater thermal stimulus than MHA ( P = 0.029) and IT ( P < 0.001) during training. Reductions in mean exercise Tgi (-0.2°C [-0.3°C, 0.0°C]; P = 0.009) , PSI (-0.4 [-0.7, -0.1]; P = 0.015) and thigh-predicted sweat [Na + ] (-9 [-13, -5 mmol·L -1 ]; P < 0.001) were observed in IC but not MHA and IT (all P > 0.05). Resting HR (MHA, -4 bpm [-7, 0 bpm]; P = 0.025; IC, -7 bpm [-10, -4 bpm]; P < 0.001; IT, -4 bpm [-8, -1 bpm]; P = 0.008) and mean exercise HR (MHA, -4 [-8, 0 bpm]; P = 0.034; IC, -11 bpm [-15, -8 bpm]; P < 0.001, IT = -5 bpm [-9, -1 bpm]; P = 0.012) were lowered in all groups after training. Isothermic conditioning elicited a greater attenuation in mean exercise HR and thigh-predicted sweat [Na + ] relative to MHA (both P < 0.05). No between-group differences were observed when comparing MHA and IT (all P > 0.05). CONCLUSIONS: Isothermic conditioning induced a more complete heat-adapted phenotype relative to MHA and IT. Interval training may serve as a time efficient alternative to MHA.


Subject(s)
Heat Stress Disorders , Military Personnel , Acclimatization/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Heart Rate/physiology , Hot Temperature , Humans , Male , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...