Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34571978

ABSTRACT

In view of the current and expected future rise in atmospheric CO2 concentrations, we examined the effect of elevated CO2 on photoinhibition of photosystem I (PSI) under fluctuating light in Arabidopsis thaliana. At 400 ppm CO2, PSI showed a transient over-reduction within the first 30 s after transition from dark to actinic light. Under the same CO2 conditions, PSI was highly reduced after a transition from low to high light for 20 s. However, such PSI over-reduction greatly decreased when measured in 800 ppm CO2, indicating that elevated atmospheric CO2 facilitates the rapid oxidation of PSI under fluctuating light. Furthermore, after fluctuating light treatment, residual PSI activity was significantly higher in 800 ppm CO2 than in 400 ppm CO2, suggesting that elevated atmospheric CO2 mitigates PSI photoinhibition under fluctuating light. We further demonstrate that elevated CO2 does not affect PSI activity under fluctuating light via changes in non-photochemical quenching or cyclic electron transport, but rather from a rapid electron sink driven by CO2 fixation. Therefore, elevated CO2 mitigates PSI photoinhibition under fluctuating light at the acceptor rather than the donor side. Taken together, these observations indicate that elevated atmospheric CO2 can have large effects on thylakoid reactions under fluctuating light.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/physiology , Carbon Dioxide/metabolism , Photosynthesis/physiology , Arabidopsis Proteins/metabolism , Electron Transport/physiology , Light , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology
2.
Plant Sci ; 305: 110828, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33691962

ABSTRACT

The water-water cycle (WWC) has the potential to alleviate photoinhibition of photosystem I (PSI) in fluctuating light (FL) at room temperature and moderate heat stress. However, it is unclear whether WWC can function as a safety valve for PSI in FL at chilling temperature. In this study, we measured P700 redox state and chlorophyll fluorescence in FL at 25 °C and 4 °C in the high WWC activity plant Dendrobium officinale. At 25 °C, the operation of WWC contributed to the rapid re-oxidation of P700 upon dark-to-light transition. However, such rapid re-oxidation of P700 was not observed at 4 °C. Upon a sudden increase in light intensity, WWC rapidly consumed excess electrons in PSI and thus avoided an over-reduction of PSI at 25 °C. On the contrary, PSI was highly reduced within the first seconds after transition from low to high light at 4 °C. Therefore, in opposite to 25 °C, the WWC is not a major alternative sink in FL at chilling temperature. Upon transition from low to high light, cyclic electron transport was highly stimulated at 4 °C when compared with 25 °C. These results indicate that D. officinale enhances cyclic electron transport to partially compensate for the inactivation of WWC in FL at 4 °C.


Subject(s)
Adaptation, Ocular/physiology , Cold Temperature , Dark Adaptation/physiology , Dendrobium/physiology , Electron Transport/physiology , Heat-Shock Response/physiology , Photosystem I Protein Complex/physiology , Photosynthesis/physiology , Plant Leaves/physiology
3.
Plant Sci ; 303: 110795, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33487367

ABSTRACT

Under natural field conditions, plants usually experience fluctuating light (FL) under moderate heat stress in summer. However, responses of photosystems I and II (PSI and PSII) to such combined stresses are not well known. Furthermore, the role of water-water cycle (WWC) in photoprotection in FL under moderate heat stress is poorly understood. In this study, we examined chlorophyll fluorescence and P700 redox state in FL at 42 °C in two orchids, Dendrobium officinale (with high WWC activity) and Bletilla striata (with low WWC activity). After FL treatment at 42 °C, PSI activity maintained stable while PSII activity decreased significantly in these two orchids. In D. officinale, the WWC could rapidly consume the excess excitation energy in PSI and thus avoided an over-reduction of PSI upon any increase in illumination. Therefore, in D. officinale, WWC likely protected PSI in FL at 42 °C. In B. striata, heat-induced PSII photoinhibition down-regulated electron flow from PSII and thus prevented an over-reduction of PSI after transition from low to high light. Consequently, in B. striata moderate PSII photoinhibition could protected PSI in FL at 42 °C. We conclude that, in addition to cyclic electron flow, WWC and PSII photoinhibition-repair cycle are two important strategies for preventing PSI photoinhibition in FL under moderate heat stress.


Subject(s)
Dendrobium/metabolism , Orchidaceae/metabolism , Photosystem I Protein Complex/physiology , Dendrobium/physiology , Heat-Shock Response , Light , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/radiation effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/physiology , Photosystem II Protein Complex/radiation effects
4.
Photosynth Res ; 144(3): 373-382, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32333230

ABSTRACT

Moderate heat stress and fluctuating light are typical conditions in summer in tropical and subtropical regions. This type of stress can cause photodamage to photosystems I and II (PSI and PSII). However, photosynthetic responses to the combination of heat and fluctuating light in young leaves are little known. In this study, we investigated chlorophyll fluorescence and P700 redox state under fluctuating light at 25 °C and 42 °C in young leaves of tobacco. Our results indicated that fluctuating light caused selective photodamage to PSI in the young leaves at 25 °C and 42 °C. Furthermore, the moderate heat stress significantly accelerated photoinhibition of PSI under fluctuating light. Within the first 10 s after transition from low to high light, cyclic electron flow (CEF) around PSI was highly stimulated at 25 °C but was slightly activated at 42 °C. Such depression of CEF activation at moderate heat stress were unable to maintain energy balance under high light. As a result, electron flow from PSI to NADP+ was restricted, leading to the over-reduction of PSI electron carriers. These results indicated that moderate heat stress altered the CEF performance under fluctuating light and thus accelerated PSI photoinhibition in tobacco young leaves.


Subject(s)
Electron Transport/radiation effects , Nicotiana/physiology , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Heat-Shock Response , Light , Oxidation-Reduction , Photosystem I Protein Complex/radiation effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Nicotiana/radiation effects
5.
Plant Sci ; 292: 110371, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32005377

ABSTRACT

Moderate heat stress is usually accompanied with fluctuating light in summer. Although either heat stress or fluctuating light can cause photoinhibition of photosystems I and II (PSI and PSII), it is unclear whether moderate heat stress accelerate photoinhibition under fluctuating light. Here, we measured chlorophyll fluorescence, P700 redox state and the electrochromic shift signal under fluctuating light at 25 °C and 42 °C for tobacco leaves. We found that (1) the thylakoid proton conductance was significantly enhanced at 42 °C, leading to a decline in trans-thylakoid proton gradient (ΔpH); (2) this low ΔpH at 42 °C did not decrease donor-side limitation of PSI and thermal energy dissipation in PSII; (3) the activation of cyclic electron flow (CEF) around PSI was elevated at 42 °C; and (4) the moderate heat stress did not accelerate photoinhibition of PSI and PSII under fluctuating light. These results strongly indicate that under moderate heat stress the stimulation of CEF protects PSI under fluctuating light in tobacco leaves.


Subject(s)
Heat-Shock Response , Light , Nicotiana/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Nicotiana/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...