Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Gastroenterol Rep (Oxf) ; 9(4): 339-349, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34567566

ABSTRACT

BACKGROUND: Approximately 10% of patients with gastric cancer (GC) have a genetic predisposition toward the disease. However, there is scant knowledge regarding germline mutations in predisposing genes in the Chinese GC population. This study aimed to determine the spectrum and distribution of predisposing gene mutations among Chinese GC patients known to have hereditary high-risk factors for cancer. METHODS: A total of 40 GC patients from 40 families were recruited from seven medical institutions in China. Next-generation sequencing was performed on 171 genes associated with cancer predisposition. For probands carrying pathogenic/likely pathogenic germline variants, Sanger sequencing was applied to validate the variants in the probands as well as their relatives. RESULTS: According to sequencing results, 25.0% (10/40) of the patients carried a combined total of 10 pathogenic or likely pathogenic germline variants involving nine different genes: CDH1 (n = 1), MLH1 (n = 1), MSH2 (n = 1), CHEK2 (n = 1), BLM (n = 1), EXT2 (n = 1), PALB2 (n = 1), ERCC2 (n = 1), and SPINK1 (n = 2). In addition, 129 variants of uncertain significance were identified in 27 patients. CONCLUSIONS: This study indicates that approximately one in every four Chinese GC patients with hereditary high risk factors may harbor pathogenic/likely pathogenic germline alterations in cancer-susceptibility genes. The results further indicate a unique genetic background for GC among Chinese patients.

2.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1154-1162, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33899383

ABSTRACT

To understand the nutrient use strategies of 11 tree species in a subtropical common-garden, we measured the specific leaf area, nitrogen (N) and phosphorus (P) resorption and stoichiometric characteristics of leaves in August 2019. The results showed that the specific leaf area, N and P concentrations in mature and senescent leaves of evergreen broadleaved (Lindera communis, Cinnamomum camphora, Schima superba, Castanopsis carlesii, Michelia macclurei and Elaeocarpus decipiens) and coniferous species (Cunninghamia lanceolata and Pinus massoniana) were lower than those of deciduous broadleaved species (Liquidambar formosana, Sapindus mukorossi and Liriodendron chinense). In contrast, C:N and C:P in mature leaves of evergreen broadleaved and coniferous species were significantly higher than those of deciduous broadleaved species. Except for C. carlesii, the N:P of all the species were lower than 14. Compared with other tree species, N and P resorption efficiencies of S. mukorossi were higher than 50% based on both mass and leaf area. Although P resorption efficiency of P. massoniana, C. lanceolata and C. camphora were higher than 50%, N and P resorption efficiency of M. macclurei were the lowest with only 15%-30%. In addition, specific leaf area of mature leaves was significantly positively correlated with N and P concentrations, but negatively correlated with C:N and C:P. In the common-garden, evergreen broadleaved species such as C. carlesii and L. communis, and coniferous species such as P. massoniana might belong to the slow investment species with lower specific leaf area, N and P concentrations, displaying relatively efficient in N and P resorption and utilization in comparison with other species. In contrast, deciduous broadleaved species such as S. mukoraiensis might be the fast investment species with low N and P use efficiency. Interestingly, tree species being restricted by N availability did not exhibit higher N resorption efficiency in the common-garden. Similarly, C. carlesii, the only P-restricted species here, did not exhibit higher P resorption efficiency. Our results provided scientific support for afforestation practice in the mid-subtropics.


Subject(s)
Cunninghamia , Trees , China , Nitrogen/analysis , Phosphorus , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...