Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Viruses ; 15(8)2023 08 08.
Article in English | MEDLINE | ID: mdl-37632047

ABSTRACT

Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) in many countries. Some hantaviruses infect wild or domestic animals without causing severe symptoms. Rodents, shrews, and bats are reservoirs of various mammalian hantaviruses. Recent years have witnessed significant advancements in the study of hantaviruses including genomics, taxonomy, evolution, replication, transmission, pathogenicity, control, and patient treatment. Additionally, new hantaviruses infecting bats, rodents, shrews, amphibians, and fish have been identified. This review compiles these advancements to aid researchers and the public in better recognizing this zoonotic virus family with global public health significance.


Subject(s)
Chiroptera , Orthohantavirus , RNA Viruses , Animals , Humans , Public Health , Shrews , Orthohantavirus/genetics
3.
Front Vet Sci ; 9: 1064766, 2022.
Article in English | MEDLINE | ID: mdl-36532347

ABSTRACT

Human monkeypox, caused by monkeypox virus, has spread unprecedentedly to more than 100 countries since May 2022. Here we summarized the epidemiology of monkeypox through a literature review and elucidated the risks and elimination strategies of this outbreak mainly based on the summarized epidemiology. We demonstrated that monkeypox virus became more contagious and less virulent in 2022, which could result from the fact that the virus entered a special transmission network favoring close contacts (i.e., sexual behaviors of men who have sex with men outside Africa) and the possibility that the virus accumulated a few adaptive mutations. We gave the reasons to investigate whether cattle, goats, sheep, and pigs are susceptible to monkeypox virus and whether infection with monkeypox virus could be latent in some primates. We listed six potential scenarios for the future of the outbreak (e.g., the outbreak could lead to endemicity outside Africa with increased transmissibility or virulence). We also listed multiple factors aiding or impeding the elimination of the outbreak. We showed that the control measures strengthened worldwide after the World Health Organization declared the outbreak a public health emergency of international concern (PHEIC) could eliminate the outbreak in 2022. We clarified eight strategies, i.e., publicity and education, case isolation, vaccine stockpiling, risk-based vaccination or ring vaccination, importation quarantine, international collaboration, and laboratory management, for the elimination of the outbreak.

4.
J Fish Biol ; 101(3): 597-612, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35662011

ABSTRACT

Two experiments were conducted to investigate the in vitro effects of Eucommia ulmoides (E. ulmoides) and its active components on the growth, lipid metabolism and collagen metabolism of grass carp's (Ctenopharyngodon idellus) hepatocytes and intramuscular fibroblasts. In experiments 1 and 2 (Expt. 1, 2), hepatocytes and intramuscular fibroblasts were treated with 2.5, 5, 10, 20, 40 and 80 µg ml-1 of Eucommia bark extract (EBE), Eucommia leaf extract (ELE), pinoresinol diglucoside (PDG), chlorogenic acid (CGA), quercetin (QC) and aucubin (AU) for 24 h, respectively, then the cell growth, lipid and collagen metabolism-related gene expressions were evaluated. The results showed that the cell proliferation rate of hepatocytes and intramuscular fibroblasts was significantly improved by the supplementation of EBE, ELE, CGA, QC and AU. Moreover, triglyceride concentration of hepatocytes was significantly decreased by the EBE, ELE, CGA and QC supplementations compared to the control. Meanwhile, EBE, ELE, CGA, QC and AU supplementations significantly upregulated the relative gene expressions of insulin-like growth factor-1 (igf1), protein kinase B (akt), target of rapamycin (tor) and eukaryotic initiation factor 4E binding protein 1 (4ebp1) in hepatocytes, and ribosomal protein S6 kinase 1 (s6k1) transcription was significantly activated by ELE, CGA and QC supplementations. Nonetheless, phosphatidylinositol 3-kinase (pi3k) was unaffected by any of the supplements. In addition, the mRNA expressions of genes associated with lipid metabolism (peroxisome proliferator activated receptor α pparα, carnitine palmitoyltransferase 1 cpt1, adipose triglyceride lipase atgl, hormone-sensitive lipase hsl, peroxisome proliferator activated receptor γ pparγ) were significantly upregulated by EBE, ELE, CGA and QC. In intramuscular fibroblasts, the EBE, ELE, CGA, QC and AU supplementations significantly increased in vitro hydroxyproline concentrations, promoted the relative expressions of transforming growth factor-ß1 (tgfß1), connective tissue growth factor (ctgf), collagen type I alpha 1/2 chain (col1a1, col1a2), lysine oxidase (lox) and tissue inhibitor of matrix metalloproteinase-2 (timp2), and decreased matrix metalloproteinase-2 (mmp2) gene expression. Also, the gene expressions of drosophila mothers against decapentaplegic protein 2/4 (smad2, smad4) and proline hydroxylase (phd) were significantly upregulated by ELE, CGA, QC and AU supplementations. Based on the present in vitro results of grass carp, EBE, ELE, CGA, QC and AU improved the growth and lipid metabolism (except AU) in hepatocytes, and promoted the collagen deposition in intramuscular fibroblast, which is partly attributed to the signalling pathways of AKT/TOR, PPARα and TGF-ß/Smads/CTGF.


Subject(s)
Carps , Eucommiaceae , Animals , Carps/metabolism , Eucommiaceae/metabolism , Fibroblasts/metabolism , Hepatocytes , Lipid Metabolism , Matrix Metalloproteinase 2/metabolism , PPAR alpha/metabolism , PPAR alpha/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology
5.
Fish Shellfish Immunol ; 119: 635-644, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34740770

ABSTRACT

The study investigated the dietary effects of Clostridium autoethanogenum protein (CAP) substituting fish meal on the growth, intestinal histology, serum immune indexes and transcriptome of Pacific white shrimp, Litopenaeus vannamei. Four isonitrogenous and isolipidic diets were designed as the control diet (CON) containing 560 g/kg fish meal, and three fish meal-substituted diets in which 30% (CAP-30), 45% (CAP-45) and 70% (CAP-70) fish meal were replaced with CAP, respectively. The four diets were fed to shrimp with initial body weight of 2.78 ± 0.13 g for 8 weeks. The results showed that the weight gain, feed intake, survival and intestinal villus height in CAP-45 and CAP-70 groups were lower than those of the control and CAP-30 groups (P < 0.05). In addition, the serum aspartate aminotransferase and phenol oxidase activities in all fish meal-substituted groups, and the lysozyme activity in CAP-45 and CAP-70 groups were increased, while the total protein content in CAP-45 and CAP-70 groups was decreased when compared with the control (P < 0.05). Transcriptome profiling of hepatopancreas indicated that high inclusion of CAP negatively affected the protein synthesis and the utilization of nutrients by regulating pancreas secretion, protein digestion and absorption, ribosome pathways, and disturbed the immune system and metabolic processes by phagosomes and lysosomes pathways, thereby affecting the growth performance and immune function of shrimp. In conclusion, CAP could substitute 30% fish meal in a diet containing 560 g/kg fish meal without adverse effects on the growth, intestinal histology and immunity of Pacific white shrimp.


Subject(s)
Animal Feed , Clostridium , Penaeidae , Animal Feed/analysis , Animals , Diet/veterinary , Fish Proteins , Fishes , Gene Expression Profiling , Immunity, Innate/genetics , Penaeidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...