Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903695

ABSTRACT

All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.

2.
Biomater Sci ; 10(14): 3963-3971, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35708018

ABSTRACT

Currently, there is no effective method to prevent the formation of hypertrophic scars and keloids, which can cause severe physical and psychological burdens to patients. Secreted protein acidic and cysteine-rich (SPARC) is involved in wound fibrosis by modulating fibroblast functions, causing excessive collagen deposition during wound healing. Thus, the reduction in SPARC gene expression after wounding can contribute to the downstream reduction in collagen production at the wound site and prevent scar formation. In this study, a dissolvable and biocompatible hyaluronic acid (HA) microneedle patch loaded with nanoplexes containing tyramine-modified gelatin and siRNA for SPARC (siSPARC/Gtn-Tyr) was investigated for topical scar prevention. Tyramine-modified gelatin (Gtn-Tyr) provides electrostatic protection and enhances cell internalization for siSPARC. In vitro studies using human dermal fibroblasts showed that both siSPARC/Gtn-Tyr nanoplexes and siSPARC/Gtn-Tyr-loaded microneedle patches can significantly reduce SPARC gene expression (P < 0.05) and do not cause discernable cytotoxic effects. Further studies using a mouse wound model demonstrate that the siSPARC/Gtn-Tyr-loaded microneedle patch can reduce collagen production during wound healing without triggering an immune response. When Gtn-Tyr-siSPARC is administered transdermally at the wound site, effective collagen reduction is achieved through silencing of the matricellular SPARC protein, thus promising the reduction of scar formation. Overall, the siSPARC/Gtn-Tyr loaded microneedle patch can potentially provide an effective transdermal anti-fibrotic treatment.


Subject(s)
Cicatrix , Hyaluronic Acid , RNA, Small Interfering/genetics , Collagen/metabolism , Fibrosis , Gelatin , Humans , Skin/metabolism , Tyramine
3.
Biomaterials ; 269: 120459, 2021 02.
Article in English | MEDLINE | ID: mdl-33139071

ABSTRACT

The emergence of near-infrared-II (NIR-II) activated photomedicines has extended the penetration depth for noninvasive theranostics, especially for photothermal nanomedicines. The current early development stage for NIR-II activated photomedicines has focused on creating a greater variety of photothermal agents (PTAs) with superior photothermal conversion ability. However, there is no thorough review for NIR-II inorganic PTAs and most comparisons of the photothermal performances of NIR-II inorganic PTAs are made with NIR-I PTAs. This review will first discuss about the key mechanisms of NIR-II absorption and photothermal conversion. Subsequently, this review will summarize recently developed advanced NIR-II inorganic PTAs based on the dominant inorganic elements and provide a comparison of their NIR-II photothermal performances. The nanostructure design, enhancement strategies and potential biomedical applications will be listed and discussed. We hope this review will further inspire active development and study of NIR-II activated inorganic PTAs with good photothermal conversion ability, multifunctionality, biocompatibility or biodegradability, and disease targeting ability.


Subject(s)
Nanomedicine , Nanostructures , Phototherapy
4.
Biomater Sci ; 8(10): 2878-2886, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32296788

ABSTRACT

Tuning the configuration of lanthanide-doped upconversion nanoparticles (UCNPs) has been proven to be an effective approach to enhance upconversion (UC) efficiency, especially for neodymium (Nd3+)-sensitized UCNPs. Rational configuration design can spatially separate activators and sensitizers, achieving the evolution from single core to multilayer structures. However, optimizing multiphoton UC emission via configuration modulation, especially in the ultraviolet range, is yet to be fully investigated. In this work, thickness tuning of the sensitizing layer containing Nd3+ ions and the inert layer containing gadolinium ions at a fixed combined thickness of 5 nm in tetralayer UCNPs to exclude the size effect is reported for the first time. The optimal thickness of sensitizing and inert layers was determined to be 3 and 2 nm respectively, showing a new strategy of balancing sensitization and surface passivation to enhance 4-photon (360 nm) emission. Although 3-photon emission (475 nm) is mainly influenced by the overall size, its emission intensity remains similar in all the tetralayer UCNPs. Additionally, an 808 nm cross-linked hydrogel has been demonstrated as a potential near-infrared activated tissue sealant. Our results have uncovered the structural parameters for optimal ultraviolet UC emissions and elucidated the strategic importance of nano-configuration design to minimize the energy loss in the high-photon UC process.


Subject(s)
Cross-Linking Reagents/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Neodymium/chemistry , Tissue Adhesives/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/pharmacology , Humans , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Infrared Rays , Molecular Structure , Particle Size , Surface Properties , Tissue Adhesives/chemical synthesis , Tissue Adhesives/pharmacology , Ultraviolet Rays
5.
Small ; 16(8): e1906797, 2020 02.
Article in English | MEDLINE | ID: mdl-32003923

ABSTRACT

The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)-based multiplex proteins activation tool to ablate deep-tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300-fold enhancement of blue (450-470 nm) and red (590-610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light-induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep-tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single- and multiple-cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.


Subject(s)
Ablation Techniques , Locomotion , Nanoparticles , Neurons , Ablation Techniques/methods , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/radiation effects , Infrared Rays , Light , Locomotion/drug effects , Nanoparticles/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/radiation effects , Optogenetics , Singlet Oxygen/chemistry
6.
Small ; 16(1): e1905265, 2020 01.
Article in English | MEDLINE | ID: mdl-31782909

ABSTRACT

Neodymium (Nd3+ )-sensitized nanoconstructs have gained increasing attention in recent decades due to their unique properties, especially optical properties. The design of various Nd3+ -sensitized nanosystems is expected to contribute to medical and health applications, due to their advantageous properties such as high penetration depth, excellent photostability, non-photobleaching, low cytotoxicity, etc. However, the low conversion efficiency and potential long-term toxicity of Nd3+ -sensitized nanoconstructs are huge obstacles to their clinical translations. This review article summarizes three energy transfer pathways of all kinds of Nd3+ -sensitized nanoconstructs focusing on the properties of Nd3+ ions and discusses their recent potential applications as near-infrared (NIR) enabled photomedicine. This review article will contribute to the design and fabrication of novel Nd3+ -sensitized nanoconstructs for NIR-enabled photomedicine, aiming for potentially safer and more efficient designs to get closer to clinical usage.


Subject(s)
Infrared Rays , Nanoparticles/chemistry , Neodymium/chemistry , Phototherapy
7.
Angew Chem Int Ed Engl ; 58(25): 8536-8540, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30985055

ABSTRACT

Cross-relaxation among sensitizers is commonly regarded as deleterious in fluorescent materials, although favorable in photothermal agents. Herein, we coated Prussian blue (PB) on NaNdF4 nanoparticles to fabricate core-shell nanocomplexes with new cross relaxation pathways between the ladder-like energy levels of Nd3+ ions and continuous energy band of PB. The photothermal conversion efficiency was improved exceptionally and the mechanism of the enhanced photothermal effect was investigated. In vivo photoacoustic imaging and photothermal therapy demonstrated the potential of the enhanced photothermal agents. Moreover, the concept of generating new cross-relaxation pathways between different materials is proposed to contribute to the design of all kinds of enhanced photothermal agents.

8.
ACS Nano ; 13(3): 3373-3386, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30681836

ABSTRACT

Near-infrared (NIR) light penetrates tissue deeply, but its application to motor behavior stimulation has been limited by the lack of known genetic NIR light-responsive sensors. We designed and synthesized a Yb3+/Er3+/Ca2+-based lanthanide-doped upconversion nanoparticle (UCNP) that effectively converts 808 nm NIR light to green light emission. This UCNP is compatible with Chrimson, a cation channel activated by green light; as such, it can be used in the optogenetic manipulation of the motor behaviors of Caenorhabditis elegans. We show that this UCNP effectively activates Chrimson-expressing, inhibitory GABAergic motor neurons, leading to reduced action potential firing in the body wall muscle and resulting in locomotion inhibition. The UCNP also activates the excitatory glutamatergic DVC interneuron, leading to potentiated muscle action potential bursts and active reversal locomotion. Moreover, this UCNP exhibits negligible toxicity in neural development, growth, and reproduction, and the NIR energy required to elicit these behavioral and physiological responses does not activate the animal's temperature response. This study shows that UCNP provides a useful integrated optogenetic toolset, which may have wide applications in other experimental systems.


Subject(s)
Caenorhabditis elegans/physiology , Lanthanoid Series Elements/chemistry , Motor Neurons/physiology , Nanoparticles/chemistry , Animals , Infrared Rays
9.
Acta Biomater ; 63: 246-260, 2017 11.
Article in English | MEDLINE | ID: mdl-28888665

ABSTRACT

In this study, Type I collagen was extracted from fish scales asa potential alternative source of collagen for tissue engineering applications. Since unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo, additional methylation modification and 1,4-butanediol diglycidyl ether (BDE) crosslinking steps were used to improve the physicochemical properties of fish scale-derived collagen. Subsequently, in vivo studies using a murine model demonstrated the biocompatibility of the different fish scale-derived collagen patches. In general, favorable integration of the collagen patches to the surrounding tissues, with good infiltration of cells, blood vessels (BVs) and lymphatic vessels (LVs) were observed under growth factor-free conditions. Interestingly, significantly higher (p<0.05) number of LVs was found to be more abundant around collagen patches with methylation modification and BDE crosslinking. Overall, we have demonstrated the potential application of fish scale-derived collagen as a promising scaffolding material for various biomedical applications. STATEMENT OF SIGNIFICANCE: Currently the most common sources of collagen are of bovine and porcine origins, although the industrial use of collagen obtained from non-mammalian species is growing in importance, particularly since they have a lower risk of disease transmission and are not subjected to any cultural or religious constraints. However, unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo. Hence, in this study, Type I collagen was successfully extracted from fish scales and chemically modified and crosslinked. In vitro studies showed overall improvement in the physicochemical properties of the material, whilst in vivo implantation studies showed improvements in the growth of blood and lymphatic host vessels in the vicinity of the implants.


Subject(s)
Animal Scales/chemistry , Collagen/pharmacology , Lymphangiogenesis/drug effects , Lymphatic Vessels/physiology , Neovascularization, Physiologic/drug effects , Animals , Butylene Glycols/chemistry , Cross-Linking Reagents/chemistry , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Esterification , Fishes , Implants, Experimental , Lymphography , Methylation , Mice, Inbred C57BL , Regeneration , Spectroscopy, Fourier Transform Infrared
10.
Mater Sci Eng C Mater Biol Appl ; 75: 349-358, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415472

ABSTRACT

Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO2) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO2-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO2-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO2-treated ECM coating can be potentially used for various biomedical applications. The SC-CO2-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO2-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO2-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO2 method for delipidation and decellularization of adipose tissue whilst retaining its ECM and its subsequent utilization as a bioactive surface coating material for soft tissue engineering, angiogenesis and wound healing applications.


Subject(s)
Adipose Tissue/chemistry , Carbon Dioxide , Extracellular Matrix Proteins , Extracellular Matrix/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Keratinocytes/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Cell Line, Tumor , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/pharmacology , Female , Human Umbilical Vein Endothelial Cells/cytology , Humans , Keratinocytes/cytology , Male
11.
ACS Nano ; 11(3): 2846-2857, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28221761

ABSTRACT

Nd3+-sensitized upconversion nanoparticles are among the most promising emerging fluorescent nanotransducers. They are activated by 808 nm irradiation, which features merits such as limited tissue overheating and deeper penetration depth, and hence are attractive for diagnostic and therapeutic applications. Recent studies indicate that ultrasmall nanoparticles (<10 nm) are potentially more suitable for clinical application due to their favorable biodistribution and safety profiles. However, upconversion nanoparticles in the sub-10 nm range suffer from poor luminescence due to their ultrasmall size and greater proportion of lattice defects. To reconcile these opposing traits, we adopt a combinatorial strategy of energy migration manipulation and crystal lattice modification, creating ultrasmall-superbright Nd3+-sensitized nanoparticles with 2 orders of magnitude enhancement in upconversion luminescence. Specifically, we configure a sandwich-type nanostructure with a Yb3+-enriched intermediate layer [Nd3+]-[Yb3+-Yb3+]-[Yb3+-Tm3+] to form a positively reinforced energy migration system, while introducing Ca2+ into the crystal lattice to reduce lattice defects. Furthermore, we apply the nanoparticles to 808 nm light-mediated drug release. The results indicate time-dependent cancer cells killing and better antitumor activities. These ultrasmall-superbright dots have unraveled more opportunities in upconversion photomedicine with the promise of potentially safer and more effective therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Nanoparticles/chemistry , Neodymium/chemistry , Animals , Antineoplastic Agents/administration & dosage , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Female , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Neodymium/administration & dosage , Particle Size , Structure-Activity Relationship , Surface Properties , Temperature , Tumor Cells, Cultured
12.
Sci Rep ; 6: 20142, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26832603

ABSTRACT

Covalent bonding of graphene oxide quantum dots (GOQDs) onto amino modified polyvinylidene fluoride (PVDF) membrane has generated a new type of nano-carbon functionalized membrane with significantly enhanced antibacterial and antibiofouling properties. A continuous filtration test using E. coli containing feedwater shows that the relative flux drop over GOQDs modified PVDF is 23%, which is significantly lower than those over pristine PVDF (86%) and GO-sheet modified PVDF (62%) after 10 h of filtration. The presence of GOQD coating layer effectively inactivates E. coli and S. aureus cells, and prevents the biofilm formation on the membrane surface, producing excellent antimicrobial activity and potentially antibiofouling capability, more superior than those of previously reported two-dimensional GO sheets and one-dimensional CNTs modified membranes. The distinctive antimicrobial and antibiofouling performances could be attributed to the unique structure and uniform dispersion of GOQDs, enabling the exposure of a larger fraction of active edges and facilitating the formation of oxidation stress. Furthermore, GOQDs modified membrane possesses satisfying long-term stability and durability due to the strong covalent interaction between PVDF and GOQDs. This study opens up a new synthetic avenue in the fabrication of efficient surface-functionalized polymer membranes for potential waste water treatment and biomolecules separation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofouling , Escherichia coli/drug effects , Graphite/pharmacology , Membranes, Artificial , Polyvinyls/chemistry , Quantum Dots/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/ultrastructure , Microbial Sensitivity Tests , Particle Size , Polyethylene Glycols/chemistry , Quantum Dots/ultrastructure , Spectroscopy, Fourier Transform Infrared
13.
ChemSusChem ; 9(2): 172-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26732134

ABSTRACT

Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency.


Subject(s)
Aniline Compounds/chemistry , Coloring Agents/chemistry , Electric Power Supplies , Nanotubes/chemistry , Oxides/chemistry , Solar Energy , Electric Conductivity , Electrochemistry , Electrodes , Polymerization
14.
Biosens Bioelectron ; 77: 942-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26528809

ABSTRACT

We present a new approach to directly grow uniform and highly-ordered TiO2 nanosheets array (NSA) on a low-cost flexible carbon cloth substrate while simultaneously fulfill precise TiO2 nanostructure tailoring and crystal phase control. The unique vertically-erected TiO2 NSA/carbon cloth with hierarchical structures was directly explored as electrode for enzyme immobilization and biosensing applications without suffering any influences of insulating binders usually used to fix nanomaterials on conductive substrates during sensor fabrications. Efficient direct electron transfer was successfully achieved for glucose oxidase (GOx) immobilized on the TiO2 NSA/carbon cloth, which produces a stable, mediator-free glucose sensor with good selectivity, high-sensitivity (52 µA mM(-1)cm(-2)), low response time (<5s) and low detection limit (23.4 µM, S/N=3). The mechanism of the superior direct electrochemical properties and sensing performance was investigated in detail, and discussed from the aspects of material nanostructure and crystalline form of TiO2 NSA, and an intimate contact between TiO2 and carbon cloth resulted from direct crystallization and growth of TiO2 nanosheets on the substrate.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Glucose Oxidase/chemistry , Glucose/analysis , Metal Nanoparticles/chemistry , Titanium/chemistry , Carbon/chemistry , Crystallization/methods , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Membranes, Artificial , Protein Binding , Reproducibility of Results , Sensitivity and Specificity
15.
Macromol Biosci ; 16(2): 276-87, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26445013

ABSTRACT

A 3D injectable hydrogel-bioceramic composite consisting of gelatin-3-(4-hydroxyphenyl) propionic acid (Gtn-HPA) and carboxymethyl cellulose-tyramine (CMC-Tyr), incorporated with fish scale-derived calcium phosphate (CaP), is developed for bone applications. The hydrogel-bioceramic composite has significantly improved the elastic modulus compared to the non-filled hydrogel, of which the addition of 10 w/v% CaP showed zero order fluorescein isothiocyanate (FITC)-dextran release profile and a significantly higher proliferation rate of encapsulated cells. All the samples promote the nucleation and growth of CaP minerals when exposed to 1× SBF. Overall, the hydrogel-bioceramic composite with 10 w/v% CaP can potentially be used as a periosteum-mimicking membrane to facilitate bone regeneration.


Subject(s)
Biomimetic Materials , Bone Regeneration/drug effects , Bone Substitutes , Hydrogels , Membranes, Artificial , Periosteum , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Ceramics , Fishes , HEK293 Cells , Humans , Hydrogels/chemistry , Hydrogels/pharmacology
16.
Chem Commun (Camb) ; 51(45): 9381-4, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25959829

ABSTRACT

Single-crystalline-like P-N type CuInS2/NaInS2 heterogeneous nanosheets were synthesized by partial cation exchange reaction and show highly improved photocatalytic H2 evolution activity attributed to the increased efficiency of interfacial charge transfer.

17.
Nanotoxicology ; 9(3): 404-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25976321

ABSTRACT

An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public's perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology.


Subject(s)
Nanostructures/toxicity , Nanotechnology , Safety
18.
NPJ Biofilms Microbiomes ; 1: 15020, 2015.
Article in English | MEDLINE | ID: mdl-28721235

ABSTRACT

OBJECTIVE: Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using Escherichia coli as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC-MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved. METHODS: The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO2 hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates. RESULTS: The hybrid PEC-MFC platform generated a photocurrent density of 0.35 mA/cm2 (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm2) under one-sun illumination (100 mW/cm2) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H2 production. No H2 was observed in the P25 standard PEC cell whereas H2 evolution rate was ~3.4 µmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of E. coli through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO2 hollow spheres electrode. CONCLUSIONS: The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and semiconductor-based PEC water splitting.

19.
Nanoscale ; 6(21): 12609-17, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25185642

ABSTRACT

The current work reports a type of "smart" lanthanide-based theranostic nanoprobe, NaDyF4:Yb(3+)/NaGdF4:Yb(3+),Er(3+), which is able to circumvent the up-converting poisoning effect of Dy(3+) ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.


Subject(s)
Lanthanoid Series Elements/chemistry , Magnetic Resonance Imaging , Microscopy, Fluorescence , Photochemotherapy , Cell Survival , Chlorophyllides , Contrast Media/chemistry , Fluorescence , HeLa Cells , Humans , Microscopy, Electron, Transmission , Oxygen/chemistry , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Porphyrins/chemistry , Reactive Oxygen Species/chemistry , Singlet Oxygen/chemistry , Surface Properties
20.
Chemphyschem ; 15(16): 3580-91, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25145759

ABSTRACT

The total and partial solubility parameters (dispersion, polar and hydrogen-bonding solubility parameters) of ten ionic liquids were determined. Intrinsic viscosity approaches were used that encompassed a one-dimensional method (1D-Method), and two different three-dimensional methods (3D-Method1 and 3D-Method2). The effect of solvent type, the dimethylacetamide (DMA) fraction in the ionic liquid, and dissolution temperature on solubility parameters were also investigated. For all types of effect, both the 1D-Method and 3D-Method2 present the same trend in the total solubility parameter. The partial solubility parameters are influenced by the cation and anion of the ionic liquid. Considering the effect on partial solubility parameters of the solvent type in the ionic liquid, it was observed that in both 3D methods, the dispersion and polar parameters of a 1-ethyl-3-methylimidazolium acetate/solvent (60:40 vol %) mixture tend to increase as the total solubility parameter of the solvent increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...