Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Cell Death Discov ; 10(1): 285, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877005

ABSTRACT

DUSP22, an atypical dual-specificity phosphatase enzyme, plays a significant role in regulating multiple kinase signaling pathways by dephosphorylation. Our study demonstrated that decreased DUSP22 expression is associated with shorter disease-free survival, advanced TNM (tumor, lymph nodes, and metastasis), cancer stage, and higher tumor grade in lung adenocarcinoma (LUAD) patients. Exogenous DUSP22 expression reduces the colony-forming capacity of lung cancer cells and inhibits xenograft tumor growth primarily by targeting EGFR and suppressing its activity through dephosphorylation. Knockdown of DUSP22 using shRNA enhances EGFR dependency in HCC827 lung cancer cells and increases sensitivity to gefitinib, an EGFR inhibitor. Consistently, genetic deletion of DUSP22 enhances EGFRdel (exon 19 deletion)-driven lung tumorigenesis and elevates EGFR activity. Pharmacological inhibition of DUSP22 activates EGFR, ERK1/2, and upregulates downstream PD-L1 expression. Additionally, lentiviral deletion of DUSP22 by shRNA enhances lung cancer cell migration through EGFR/c-Met and PD-L1-dependent pathways. Gefitinib, an EGFR inhibitor, mechanistically suppresses migration induced by DUSP22 deletion and inhibits c-Met activity. Furthermore, cabozantinib, a c-Met inhibitor, reduces migration and attenuates EGFR activation caused by DUSP22 deletion. Collectively, our findings support the hypothesis that loss of DUSP22 function in lung cancer cells confers a survival advantage by augmenting EGFR signaling, leading to increased activation of downstream c-Met, ERK1/2, and PD-L1 axis, ultimately contributing to the progression of advanced lung cancer.

2.
J Autoimmun ; 146: 103221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643728

ABSTRACT

Inflammatory T cells contribute to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Analysis of the T-cell transcriptomics data of two independent SLE patient cohorts by three machine learning models revealed the pseudogene UHRF1P as a novel SLE biomarker. The pseudogene-encoded UHRF1P protein was overexpressed in peripheral blood T cells of SLE patients. The UHRF1P protein lacks the amino-terminus of its parental UHRF1 protein, resulting in missing the proteasome-binding ubiquitin-like (Ubl) domain of UHRF1. T-cell-specific UHRF1P transgenic mice manifested the induction of IL-17A and autoimmune inflammation. Mechanistically, UHFR1P prevented UHRF1-induced Lys48-linked ubiquitination and degradation of MAP4K3 (GLK), which is a kinase known to induce IL-17A. Consistently, IL-17A induction and autoimmune phenotypes of UHRF1P transgenic mice were obliterated by MAP4K3 knockout. Collectively, UHRF1P overexpression in T cells inhibits the E3 ligase function of its parental UHRF1 and induces autoimmune diseases.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Interleukin-17 , Lupus Erythematosus, Systemic , Mice, Transgenic , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Animals , Interleukin-17/metabolism , Interleukin-17/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Humans , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ubiquitination , Mice, Knockout , Disease Models, Animal , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Autoimmunity , Female
3.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532423

ABSTRACT

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, TNF-Related Apoptosis-Inducing Ligand , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Phosphorylation , Lymphocyte Activation , Tyrosine/metabolism
4.
Nat Commun ; 15(1): 532, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225265

ABSTRACT

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.


Subject(s)
Dual-Specificity Phosphatases , Ubiquitin-Protein Ligases , Humans , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Phosphorylation , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism
5.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138967

ABSTRACT

In response to injury, vascular smooth muscle cells (VSMCs) of the arterial wall dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The ERK1/2 pathway participates in cellular proliferation and migration, while dual-specificity phosphatase 6 (DUSP6, also named MKP3) can dephosphorylate activated ERK1/2. We showed that DUSP6 was expressed in low baseline levels in normal arteries; however, arterial injury significantly increased DUSP6 levels in the vessel wall. Compared with wild-type mice, Dusp6-deficient mice had smaller neointima. In vitro, IL-1ß induced DUSP6 expression and increased VSMC proliferation and migration. Lack of DUSP6 reduced IL-1ß-induced VSMC proliferation and migration. DUSP6 deficiency did not affect IL-1ß-stimulated ERK1/2 activation. Instead, ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1ß, indicating that ERK1/2 functions upstream of DUSP6 to regulate DUSP6 expression in VSMCs rather than downstream as a DUSP6 substrate. IL-1ß decreased the levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs, whereas lack of DUSP6 maintained their high levels, revealing novel functions of DUSP6 in regulating these two molecules. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining p27 and N-cadherin levels.


Subject(s)
Dual-Specificity Phosphatases , Neointima , Vascular System Injuries , Animals , Mice , Cadherins , Cell Movement , Cell Proliferation , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Hyperplasia , Mice, Inbred C57BL , Myocytes, Smooth Muscle , Neointima/genetics , Neointima/prevention & control , Vascular System Injuries/genetics
6.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909329

ABSTRACT

Dual-specificity phosphatase 8 (DUSP8) is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T cell-specific Dusp8 conditional KO (T-Dusp8 cKO) mice, mass spectrometry analysis, ChIP-Seq, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-ß signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, Il-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-Dusp8-cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of Il-9 mRNA levels in T cells and allergic responses of T-Dusp8-cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8-Pur-α interaction were indeed increased in the cytoplasm of T cells from people with asthma and patients with atopic dermatitis. Collectively, DUSP8 induces TGF-ß-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.


Subject(s)
Asthma , Dermatitis, Atopic , Hypersensitivity , Animals , Humans , Mice , Active Transport, Cell Nucleus , Asthma/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation , Interleukin-9 , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
7.
J Biomed Sci ; 30(1): 71, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608279

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chronic Disease , COVID-19/genetics , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases , Protein-Arginine N-Methyltransferases , SARS-CoV-2
8.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175394

ABSTRACT

Transient global cerebral ischemia (tGCI) resulting from cardiac arrest causes selective neurodegeneration in hippocampal CA1 neurons. Although the effect is clear, the underlying mechanisms directing this process remain unclear. Previous studies have shown that phosphorylation of Erk1/2 promotes cell survival in response to tGCI. DUSP6 (also named MKP3) serves as a cytosolic phosphatase that dephosphorylates Erk1/2, but the role of DUSP6 in tGCI has not been characterized. We found that DUSP6 was specifically induced in the cytoplasm of hippocampal CA1 neurons 4 to 24 h after tGCI. DUSP6-deficient mice showed normal spatial memory acquisition and retention in the Barnes maze. Impairment of spatial memory acquisition and retention after tGCI was attenuated in DUSP6-deficient mice. Neurodegeneration after tGCI, revealed by Fluoro-Jade C and H&E staining, was reduced in the hippocampus of DUSP6-deficient mice and DUSP6 deficiency enhanced the phosphorylation and nuclear translocation of Erk1/2 in the hippocampal CA1 region. These data support the role of DUSP6 as a negative regulator of Erk1/2 signaling and indicate the potential of DUSP6 inhibition as a novel therapeutic strategy to treat neurodegeneration after tGCI.


Subject(s)
Brain Ischemia , Ischemic Attack, Transient , Animals , Mice , Brain Ischemia/genetics , CA1 Region, Hippocampal , Cerebral Infarction , Hippocampus , Neurons
9.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37140994

ABSTRACT

Ras plays an essential role in the development of acinar-to-ductal metaplasia (ADM) and pancreatic ductal adenocarcinoma (PDAC). However, mutant Kras is an inefficient driver for PDAC development. The mechanisms of the switching from low Ras activity to high Ras activity that are required for development and progression of pancreatic intraepithelial neoplasias (PanINs) are unclear. In this study, we found that hematopoietic progenitor kinase 1 (HPK1) was upregulated during pancreatic injury and ADM. HPK1 interacted with the SH3 domain and phosphorylated Ras GTPase-activating protein (RasGAP) and upregulated RasGAP activity. Using transgenic mouse models of HPK1 or M46, a kinase-dead mutant of HPK1, we showed that HPK1 inhibited Ras activity and its downstream signaling and regulated acinar cell plasticity. M46 promoted the development of ADM and PanINs. Expression of M46 in KrasG12D Bac mice promoted the infiltration of myeloid-derived suppressor cells and macrophages, inhibited the infiltration of T cells, and accelerated the progression of PanINs to invasive and metastatic PDAC, while HPK1 attenuated mutant Kras-driven PanIN progression. Our results showed that HPK1 plays an important role in ADM and the progression of PanINs by regulating Ras signaling. Loss of HPK1 kinase activity promotes an immunosuppressive tumor microenvironment and accelerates the progression of PanINs to PDAC.


Subject(s)
Carcinoma in Situ , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Mice, Transgenic , Tumor Microenvironment , Pancreatic Neoplasms
10.
BMC Med ; 21(1): 46, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765305

ABSTRACT

BACKGROUND: Dual-specificity phosphatases (DUSPs) can dephosphorylate both tyrosine and serine/threonine residues of their substrates and regulate T cell-mediated immunity and autoimmunity. The aim of this study was to investigate the potential roles of DUSPs in ankylosing spondylitis (AS). METHODS: Sixty AS patients and 45 healthy controls were enrolled in this study. Associations of gene expression of 23 DUSPs in peripheral T cells with inflammatory cytokine gene expression and disease activity of AS were analyzed. Finally, we investigated whether the characteristics of AS are developed in DUSP-knockout mice. RESULTS: The mRNA levels of DUSP4, DUSP5, DUSP6, DUSP7, and DUSP14 in peripheral T cells were significantly higher in AS group than those of healthy controls (all p < 0.05), while DUSP22 (also named JKAP) mRNA levels were significantly lower in AS group than healthy controls (p < 0.001). The mRNA levels of DUSP4, DUSP5, DUSP6, DUSP7, and DUSP14 in T cells were positively correlated with mRNA levels of tumor necrosis factor-α (TNF-α), whereas DUSP22 was inversely correlated (all p < 0.05). In addition, inverse correlations of DUSP22 gene expression in peripheral T cells with C-reactive protein, erythrocyte sedimentation rate, and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) were observed (all p < 0.05). More importantly, aged DUSP22 knockout mice spontaneously developed syndesmophyte formation, which was accompanied by an increase of TNF-α+, interleukin-17A+, and interferon-γ+ CD3+ T cells. CONCLUSIONS: DUSP22 may play a crucial role in the pathogenesis and regulation of disease activity of AS.


Subject(s)
Spondylitis, Ankylosing , T-Lymphocytes , Animals , Mice , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Mice, Knockout , RNA, Messenger , Spondylitis, Ankylosing/genetics , Tumor Necrosis Factor-alpha
11.
Theranostics ; 12(13): 5744-5760, 2022.
Article in English | MEDLINE | ID: mdl-35966593

ABSTRACT

Rationale: GLK (MAP4K3) activates PKCθ-IKKß axis in T-cell activation and induces IL-17A-mediated autoimmune diseases. Attenuation of Treg differentiation and function by GLK could also contribute to autoimmune diseases. Methods: We analyzed the roles of GLK and IKKß in Treg differentiation and function using T-cell-specific GLK transgenic mice and IKKß conditional knockout mice. The mechanism of GLK/IKKß-mediated attenuation of Treg differentiation/function was studied by chromatin-immunoprecipitation, reporter assays, in vitro kinase assays, protein-protein interaction assays, mass spectrometry, confocal microscopy, flow cytometry, and single-cell RNA sequencing (scRNA-seq) analysis. Results: We found that GLK signaling inhibited Foxp3 transcription by blocking the function of the transcription factor FoxO1. Mechanistically, GLK directly phosphorylated and activated IKKß at Ser733 in a PKCθ-independent manner. The phospho-IKKß Ser733 induced FoxO1 Ser319 phosphorylation and nuclear export, leading to Foxp3 downregulation. Consistently, scRNA-seq analyses showed that Foxp3 mRNA levels were inversely correlated with FoxO1 mRNA levels in GLK transgenic CD4+ T cells. Conclusions: GLK-IKKß-FoxO1 signaling axis inhibits Foxp3 transcription, leading to reduction of Treg differentiation and suppressive activity, as well as induction of autoimmune disease.


Subject(s)
Autoimmune Diseases , I-kappa B Kinase , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Active Transport, Cell Nucleus , Animals , Down-Regulation , Forkhead Box Protein O1/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , I-kappa B Kinase/genetics , Mice , Protein Kinase C-theta , RNA, Messenger , T-Lymphocytes, Regulatory , Transcription Factors/genetics
12.
EMBO Mol Med ; 14(9): e15904, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35894122

ABSTRACT

ACE2 on epithelial cells is the SARS-CoV-2 entry receptor. Single-cell RNA-sequencing data derived from two COVID-19 cohorts revealed that MAP4K3/GLK-positive epithelial cells were increased in patients. SARS-CoV-2-induced GLK overexpression in epithelial cells was correlated with COVID-19 severity and vesicle secretion. GLK overexpression induced the epithelial cell-derived exosomes containing ACE2; the GLK-induced exosomes transported ACE2 proteins to recipient cells, facilitating pseudovirus infection. Consistently, ACE2 proteins were increased in the serum exosomes from another COVID-19 cohort. Remarkably, SARS-CoV-2 spike protein-stimulated GLK, and GLK stabilized ACE2 in epithelial cells. Mechanistically, GLK phosphorylated ACE2 at two serine residues (Ser776, Ser783), leading to the dissociation of ACE2 from its E3 ligase UBR4. Reduction in UBR4-induced Lys48-linked ubiquitination at three lysine residues (Lys26, Lys112, Lys114) of ACE2 prevented its degradation. Furthermore, SARS-CoV-2 pseudovirus or live virus infection in humanized ACE2 mice induced GLK and ACE2 protein levels, and ACE2-containing exosomes. Collectively, ACE2 stabilization by SARS-CoV-2-induced MAP4K3/GLK may contribute to the pathogenesis of COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
13.
J Biomed Sci ; 29(1): 40, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705979

ABSTRACT

BACKGROUND: Tight junctions (TJ) are multi-protein complexes that hold epithelial cells together and form structural and functional barriers for maintaining proper biological activities. Dual specificity phosphatase 3 (DUSP3), a suppressor of multiple protein tyrosine (Tyr) kinases, is decreased in lung cancer tissues. Here we demonstrated the role of DUSP3 in regulation of epithelial TJ. METHODS: Barrier functions of TJ were examined in wild-type or DUSP3-deficient lung epithelial cells. Animal and clinical data were analyzed for the association between DUSP3 deficiency and lung cancer progression. Proximity ligation assay, immunoblotting, and phosphatase assay were performed to study the effect of DUSP3 on the TJ protein occludin (OCLN). Mutations of Tyr residues on OCLN showed the role of Tyr phosphorylation in regulating OCLN. RESULTS: Compared to those of the DUSP3-expressing cells, we found the expression and distribution of ZO-1, a TJ-anchoring molecule, were abnormal in DUSP3-deficient cells. OCLN had an increased phosphorylation level in DUSP3-deficient cells. We identified that OCLN is a direct substrate of DUSP3. DUSP3 regulated OCLN ubiquitination and degradation through decreasing OCLN tyrosine phosphorylation directly or through suppressing focal adhesion kinase, the OCLN kinase. CONCLUSION: Our study revealed that DUSP3 is an important TJ regulatory protein and its decrease may be involved in progression of epithelial cancers.


Subject(s)
Lung Neoplasms , Tight Junctions , Animals , Dual Specificity Phosphatase 3/genetics , Dual Specificity Phosphatase 3/metabolism , Lung Neoplasms/metabolism , Occludin/genetics , Occludin/metabolism , Occludin/pharmacology , Phosphorylation , Tight Junctions/genetics , Tyrosine/metabolism , Tyrosine/pharmacology , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
14.
iScience ; 25(2): 103738, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35128351

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) approach can broadly and specifically evaluate the individual cells with minimum detection bias. To explore the individual compositional and transcriptional alteration of intestinal leukocytes in the Dual Specificity Phosphatase six knockout (D6KO) mice, we performed a scRNA-seq followed by the cell type annotation based on ImmGen database. Composition assessments found that D6KO-derived intestinal leukocytes tend to stay inactivate or immature status. The enrichment analysis showed that D6KO-derived intestinal leukocytes are less sensitive to microbes. The mod PhEA phenotypic analysis showed that the D6KO leukocytes may link to not only immune-associated but also diverse previously non-immune-related diseases. Integrating our dataset with the published dataset GSE124880 generated a comprehensive dataset for exploring intestinal immunity. Down-regulation of Ccl17 gene was found in the D6KO-derived dendritic cells. Our results demonstrated the advantage of applying scRNA-seq for dissecting the individual alteration of intestinal leukocytes, particularly in the D6KO mice at a naive state.

15.
Arthritis Rheumatol ; 74(1): 92-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34224653

ABSTRACT

OBJECTIVE: T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). Serum-derived exosomes are increased in SLE patients and are correlated with disease severity. This study was undertaken to investigate whether T cell-derived exosomal proteins play a role in SLE pathogenesis. METHODS: We characterized proteins in T cell-derived exosomes from SLE patients and healthy controls by MACSPlex exosome analysis and proteomics. To study the potential pathogenic functions of the exosomal protein identified, we generated and characterized T cell-specific transgenic mice that overexpressed that protein in T cells. RESULTS: We identified eosinophil cationic protein (ECP, also called human RNase III) as overexpressed in SLE T cell-derived exosomes. T cell-specific ECP-transgenic mice (n = 5 per group) displayed early induction of serum interferon-γ (IFNγ) levels (P = 0.062) and inflammation of multiple tissue types. Older T cell-specific ECP-transgenic mice (n = 3 per group) also displayed an increase in follicular helper T cell and plasma B cell numbers, and in autoantibody levels (P < 0.01). Single-cell RNA sequencing showed the induction of IFNγ messenger RNA (P = 2.2 × 10-13 ) and inflammatory pathways in ECP-transgenic mouse T cells. Notably, adoptively transferred ECP-containing exosomes stimulated serum autoantibody levels (P < 0.01) and tissue IFNγ levels in the recipient mice (n = 3 per group). The transferred exosomes infiltrated into multiple tissues of the recipient mice, resulting in hepatitis, nephritis, and arthritis. CONCLUSION: Our findings indicate that ECP overexpression in T cells or T cell-derived exosomes may be a biomarker and pathogenic factor for nephritis, hepatitis, and arthritis associated with SLE.


Subject(s)
Eosinophil Cationic Protein/biosynthesis , Exosomes/immunology , Inflammation/immunology , Interferon-gamma/immunology , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes/immunology , Animals , Humans , Mice , Mice, Transgenic
16.
Ann Rheum Dis ; 81(2): 243-254, 2022 02.
Article in English | MEDLINE | ID: mdl-34610951

ABSTRACT

OBJECTIVES: MAP4K3 (GLK) overexpression in T cells induces interleukin (IL)-17A production and autoimmune responses. GLK overexpressing T-cell population is correlated with severity of human systemic lupus erythematosus (SLE); however, it is unclear how GLK is upregulated in patients with SLE. METHODS: We enrolled 181 patients with SLE and 250 individuals without SLE (93 healthy controls and 157 family members of patients with SLE) in two independent cohorts from different hospitals/cities. Genomic DNAs of peripheral blood mononuclear cells were subjected to next-generation sequencing to identify GLK gene variants. The functional consequences of the identified GLK germline or somatic variants were investigated using site-directed mutagenesis and cell transfection, followed by reporter assays, mass spectrometry, immunoblotting, coimmunoprecipitation, and in situ proximity ligation assays. RESULTS: We identified 58 patients with SLE from Cohort #1 and #2 with higher frequencies of a somatic variant (chr2:39 477 124 A>G) in GLK 3'-untranslated region (UTR); these patients with SLE showed increased serum anti-double-stranded DNA levels and decreased serum C3/C4 levels. This somatic variant in 3'-UTR enhanced GLK mRNA levels in T cells. In addition, we identified five patients with SLE with GLK (A410T) germline variant in Cohort #1 and #2, as well as two other patients with SLE with GLK (K650R) germline variant in Cohort #1. Another GLK germline variant, A579T, was also detected in one patient with SLE from Cohort #2. Both GLK (A410T) and GLK (K650R) mutants inhibited GLK ubiquitination induced by the novel E3 ligase makorin ring-finger protein 4 (MKRN4), leading to GLK protein stabilisation. CONCLUSIONS: Multiple GLK germline and somatic variants cause GLK induction by increasing mRNA or protein stability in patients with SLE.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Protein Serine-Threonine Kinases/genetics , Adult , Aged , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Sequence Analysis, DNA
17.
Cell Rep ; 37(8): 110016, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818535

ABSTRACT

Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.


Subject(s)
Colitis/microbiology , Dual Specificity Phosphatase 6/metabolism , Gastrointestinal Microbiome/physiology , Animals , Caco-2 Cells , Colitis/prevention & control , Colon/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Dual Specificity Phosphatase 6/deficiency , Dual Specificity Phosphatase 6/genetics , Dysbiosis/metabolism , Epithelial Cells/metabolism , Feces , Female , Humans , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 16S/metabolism
18.
Theranostics ; 11(20): 9953-9966, 2021.
Article in English | MEDLINE | ID: mdl-34815797

ABSTRACT

Background: Serum-derived exosomes are correlated with disease severity of human systemic lupus erythematosus (SLE). The proteins in the T-cell-derived exosomes from SLE patients could contribute to inflammation. Methods: We characterized proteins of T cell-derived exosomes from SLE patients and healthy controls by proteomics. To study the potential pathogenic role of the identified exosomal protein, we generated and characterized T-cell-specific transgenic mice that overexpressed the identified protein in T cells using immunohistochemistry, immunoblotting, and single-cell RNA sequencing. Results: We identified an overexpressed protein, bactericidal/permeability-increasing protein (BPI), in SLE T cells and T-cell-derived exosomes. T-cell-specific BPI transgenic (Lck-BPI Tg) mice showed multi-tissue inflammation with early induction of serum IL-1ß levels, as well as serum triglyceride and creatinine levels. Interestingly, exosomes of Lck-BPI Tg T cells stimulated IL-1ß expression of wild-type recipient macrophages. Remarkably, adoptive transfer of BPI-containing exosomes increased serum IL-1ß and autoantibody levels in recipient mice. The transferred exosomes infiltrated into multiple tissues of recipient mice, resulting in hepatitis, nephritis, and arthritis. ScRNA-seq showed that Lck-BPI Tg T cells displayed a decrease of Treg population, which was concomitant with ZFP36L2 upregulation and Helios downregulation. Furthermore, in vitro Treg differentiation was reduced by BPI transgene and enhanced by BPI knockout. Conclusions: BPI is a negative regulator of Treg differentiation. BPI overexpression in T-cell-derived exosomes or peripheral blood T cells may be a biomarker and pathogenic factor for human SLE nephritis, hepatitis, and arthritis.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Blood Proteins/metabolism , Exosomes/metabolism , Lupus Erythematosus, Systemic/metabolism , Adult , Aged , Animals , Antimicrobial Cationic Peptides/genetics , Blood Proteins/genetics , Cell Differentiation , Exosomes/genetics , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Inflammation Mediators/metabolism , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , Transcriptome/genetics
19.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053837

ABSTRACT

Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.


Subject(s)
Binding Sites , Catalytic Domain , Dual-Specificity Phosphatases/chemistry , Mitogen-Activated Protein Kinase Phosphatases/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Protein Tyrosine Phosphatases/chemistry , Amino Acid Sequence , Amino Acids , Conserved Sequence , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Humans , Hydrogen Bonding , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mutation , Protein Binding , Protein Conformation , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism
20.
J Immunol ; 205(6): 1644-1652, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32796023

ABSTRACT

Dual-specificity phosphatase 11 (DUSP11, also named as PIR1) is a member of the atypical DUSP protein tyrosine phosphatase family. DUSP11 is only known to be an RNA phosphatase that regulates noncoding RNA stability. To date, the role of DUSP11 in immune cell signaling and immune responses remains unknown. In this study, we generated and characterized the immune cell functions of DUSP11-deficient mice. We identified TGF-ß-activated kinase 1 (TAK1) as a DUSP11-targeted protein. DUSP11 interacted directly with TAK1, and the DUSP11-TAK1 interaction was enhanced by LPS stimulation in bone marrow-derived macrophages. DUSP11 deficiency enhanced the LPS-induced TAK1 phosphorylation and cytokine production in bone marrow-derived macrophages. Furthermore, DUSP11-deficient mice were more susceptible to LPS-induced endotoxic shock. The LPS-induced serum levels of IL-1ß, TNF-α, and IL-6 were significantly elevated in DUSP11-deficient mice compared with those of wild-type mice. The data indicate that DUSP11 inhibits LPS-induced macrophage activation by targeting TAK1.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Endotoxemia/immunology , MAP Kinase Kinase Kinases/metabolism , Macrophages/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Dual-Specificity Phosphatases/genetics , Gene Expression Regulation , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...