Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Arch Virol ; 169(8): 163, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990396

ABSTRACT

Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.


Subject(s)
Antibodies, Viral , Immunity, Humoral , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Toll-Like Receptor 4 , Vaccines, Inactivated , Animals , Influenza A Virus, H7N9 Subtype/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Antibodies, Viral/immunology , Dogs , Madin Darby Canine Kidney Cells , Vaccines, Inactivated/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Antibodies, Neutralizing/immunology , Cross Protection/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Vaccine , Immunoglobulin G/immunology , Immunoglobulin G/blood
2.
J Hazard Mater ; 474: 134764, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824773

ABSTRACT

Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.


Subject(s)
Biofilms , Cobalt , Lithium , Microbial Consortia , Biofilms/drug effects , Cobalt/chemistry , Cobalt/toxicity , Microbial Consortia/drug effects , Iron/chemistry , Iron/metabolism , Adsorption , Sulfides/chemistry , Electrodes , Oxidation-Reduction
3.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622793

ABSTRACT

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Hydrostatic Pressure , Cell Differentiation/physiology , Transcription Factors/metabolism , Cells, Cultured , Bone Marrow Cells
4.
Biotechnol Prog ; : e3464, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558519

ABSTRACT

Amino acids are vital components of the serum-free medium that influence the expansion and function of NK cells. This study aimed to clarify the relationship between amino acid metabolism and expansion and cytotoxicity of NK cells. Based on analyzing the mino acid metabolism of NK-92 cells and Design of Experiments (DOE), we optimized the combinations and concentrations of amino acids in NK-92 cells culture medium. The results demonstrated that NK-92 cells showed a pronounced demand for glutamine, serine, leucine, and arginine, in which glutamine played a central role. Significantly, at a glutamine concentration of 13 mM, NK-92 cells expansion reached 161.9 folds, which was significantly higher than 55.5 folds at 2.5 mM. Additionally, under higher glutamine concentrations, NK-92 cells expressed elevated levels of cytotoxic molecules, the level of cytotoxic molecules expressed by NK-92 cells was increased and the cytotoxic rate was 68.42%, significantly higher than that of 58.08% under low concentration. In view of the close relationship between glutamine metabolism and intracellular redox state, we investigated the redox status within the cells. This study demonstrated that intracellular ROS levels in higher glutamine concentrations were significantly lower than those under lower concentration cultures with decreased intracellular GSH/GSSG ratio, NADPH/NADP+ ratio, and apoptosis rate. These findings indicate that NK-92 cells exhibit improved redox status when cultured at higher glutamine concentrations. Overall, our research provides valuable insights into the development of serum-free culture medium for ex vivo expansion of NK-92 cells.

5.
Biotechnol J ; 19(3): e2300654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472089

ABSTRACT

Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rß was increased, and the fluorescence intensity of IL-2Rß was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.


Subject(s)
Interleukin-2 , Killer Cells, Natural , Interleukin-2/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin-2/metabolism , Cytokines/metabolism , Cell Membrane
6.
Vaccines (Basel) ; 12(3)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38543921

ABSTRACT

Compared with the traditional vaccine produced in embryonated chicken eggs, cell-based manufacturing represented by the Madin-Darby canine kidney (MDCK) cell line has a larger production scale and reduces the risk of egg shortage in a pandemic. Establishing a culture system that enables high production of the influenza virus is a key issue in influenza vaccine production. Here, a serum-free suspension culture of MDCK (sMDCK) cells was obtained from adherent MDCK (aMDCK) cells by direct adaptation. Viral infection experiments showed that viral yields of influenza A/B virus in sMDCK cells were higher than in aMDCK cells. Transcriptome analysis revealed that numerous interferon-stimulated genes (ISGs) exhibited reduced expression in sMDCK cells. To further clarify the mechanism of high viral production in sMDCK cells, we demonstrated the antiviral role of RIG-I and IFIT3 in MDCK cells by knockdown and overexpression experiments. Furthermore, suppression of the JAK/STAT pathway enhances the viral accumulation in aMDCK cells instead of sMDCK cells, suggesting the reduction in the JAK/STAT pathway and ISGs promotes viral replication in sMDCK cells. Taken together, we elucidate the relationship between the host innate immune response and the high viral productive property of sMDCK cells, which helps optimize cell production processes and supports the production of cell-based influenza vaccines.

7.
Biotechnol J ; 19(3): e2400063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528344

ABSTRACT

The effective design of perfusion cell culture is currently challenging regarding balancing the operating parameters associated with the hydrodynamic conditions due to increased system complexity. To address this issue, cellular responses of an industrial CHO cell line to different types of hydrodynamic stress in benchtop perfusion bioreactors originating from agitation, sparging, and hollow fibers (HF) in the cell retention devices were systematically investigated here with the analysis of cell lysis. It was found that cell lysis was very common and most associated with the sparging stress, followed by the HF and lastly the agitation, consequently heavily impacting the estimation of process descriptors related to biomass. The results indicated that the agitation stress led to a reduced cell growth with a shift toward a more productive phenotype, suggesting an energy redirection from biomass formation to product synthesis, whereas the sparging stress had a small impact on the intracellular metabolic flux distribution but increased the cell death rate drastically. For HF stress, a similar cell maintenance profile was found as the sparging while the activity of glycolysis and the TCA cycle was significantly impeded, potentially leading to the lack of energy and thus a substantial decrease in cell-specific productivity. Moreover, a novel concept of volume average shear stress was developed to further understand the relations of different types of stress and the observed responses for an improved insight for the perfusion cell culture.


Subject(s)
Bioreactors , Hydrodynamics , Cricetinae , Animals , Cell Culture Techniques/methods , CHO Cells , Cricetulus , Perfusion
8.
J Biosci Bioeng ; 137(3): 221-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220502

ABSTRACT

Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.


Subject(s)
Anti-Bacterial Agents , Tyrosine , Animals , Cricetinae , CHO Cells , Cricetulus , Cell Culture Techniques
9.
J Food Sci ; 89(2): 851-865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38174744

ABSTRACT

Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.


Subject(s)
Cell Culture Techniques , In Vitro Meat , Cell Proliferation , Cell Culture Techniques/methods , Myoblasts , Cell Differentiation
10.
Cryobiology ; 114: 104835, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38070820

ABSTRACT

Cryopreservation is a crucial step in the supply process of off-the-shelf chimeric antigen receptor engineered natural killer (CAR-NK) cell products. Concerns have been raised over the clinical application of dimethyl sulfoxide (Me2SO) due to the potential for adverse reactions following infusion and limited cell-specific cytotoxic effects if misapplied. In this study, we developed a Me2SO-free cryopreservation medium specifically tailored for CAR-NK cells to address this limitation. The cryopreservation medium was formulated using human serum albumin (HSA) and glycerol as the base components. Following initial screening of seven clinically-compatible solutions, four with cryoprotective properties were identified. These were combined and optimized into a single formulation: IF-M. The viability, phenotype, and function of CAR-NK cells were evaluated after short-term and long-term cryopreservation to assess the effectiveness of IF-M, with Me2SO serving as the control group. The viability and recovery of CAR-NK cells in the IF-M group were significantly higher than those in the Me2SO group within 90 days of cryopreservation. Moreover, after 1 year of cryopreservation the cytotoxic capacity of CAR-NK cells cryopreserved with IF-M was comparable to that of fresh CAR-NK cells and significantly superior to that of CAR-NK cells cryopreserved in Me2SO. The CD107a expression intensity of CAR-NK cells in IF-M group was significantly higher than that of Me2SO group. No statistical differences were observed in other indicators under different cryopreservation times. These results underscore the robustness of IF-M as a suitable replacement for traditional Me2SO-based cryopreservation medium for the long-term cryopreservation and clinical application of off-the-shelf CAR-NK cells.


Subject(s)
Cryopreservation , Receptors, Chimeric Antigen , Humans , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Receptors, Chimeric Antigen/genetics , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/metabolism , Killer Cells, Natural , Cell Survival
11.
Biotechnol Lett ; 45(9): 1103-1115, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37318718

ABSTRACT

PURPOSE: The accumulation of carbon dioxide during large-scale culture of animal cells brings adverse effects, appropriate aeration strategies alleviate CO2 accumulation while improper reactor operation may lead to the presence of low CO2 partial pressure (pCO2) condition as occurs in many industrial cases. Thus, this study aims to reveal the in-depth influence of low pCO2 on Chinese Hamster Ovary (CHO) cells for providing a reference for design space determination of CO2 control with regard to the Quality by Design (QbD) guidelines. METHODS AND RESULTS: The headspace air over purging caused the ultra-low pCO2 (ULC) where the monoclonal antibody production as well as the aerobic metabolic activity were reduced. Intracellular metabolomics analysis indicated a less efficient aerobic glucose metabolic state under ULC conditions. Based on the increase of intracellular pH and lactate dehydrogenase activity, the shortage of intracellular pyruvate could be the cause of the deficient aerobic metabolism, which could be partially mitigated by pyruvate addition under ULC conditions. Finally, a semi-empirical mathematical model was used to better understand, predict and control the occurrence of extreme pCO2 conditions during the cultures of CHO cells. CONCLUSION: Low pCO2 steers CHO cells into a defective metabolic state. A predictive relation among pCO2, lactate, and pH control was applied to get new insights into CHO cell culture for better and more robust metabolic behavior and process performance and the determination of QbD design space for CO2 control.


Subject(s)
Carbon Dioxide , Lactic Acid , Cricetinae , Animals , Cricetulus , CHO Cells , Carbon Dioxide/metabolism , Partial Pressure , Lactic Acid/metabolism , Pyruvic Acid
12.
Biomater Adv ; 151: 213457, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37172432

ABSTRACT

Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Receptor, Adenosine A2B , Microspheres , Porosity , Cell Differentiation
13.
Vaccine ; 41(9): 1573-1583, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36725430

ABSTRACT

Large quantities of antigens are required since protective antigens, such as classical swine fever virus (CSFV) E2 protein, are widely used in diagnostic reagents and subunit vaccines. Compared to clonal cell lines and transient gene expression, stable cell pools provide a potential alternative platform to rapidly produce large amounts of antigens. In this work, firstly, Human embryonic kidney 293 T (HEK293T) cell pools expressing E2 protein were developed by transduction of lentiviral vectors. On the one hand, the SP7 was selected from 7 well-performing signal peptides to remarkably increase the production of E2 protein. On the other hand, it was found that high MOI could improve the expression of E2 protein by increasing gene copy numbers. Moreover, the HEK293T cell pools were evaluated for stability by passages and batch cultures, demonstrating that the cell pools were stable for at least 90 days. And then, the performance of the cell pools in batch, fed-batch, and semi-perfusion was studied. Among them, the titer of E2 protein was up to 2 g/L in semi-perfusion, which is currently the highest to the authors' knowledge. Finally, the aggregations and immunogenicity of the E2 protein were analyzed by SDS-PAGE and immunization of mice, respectively. There was no significant difference in aggregations and antibody titers of E2 protein in three culture methods. These results suggest that stable HEK293T cell pools are a promising and robust platform for rapid and efficient production of recombinant proteins.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Viral Vaccines , Swine , Humans , Animals , Mice , HEK293 Cells , Viral Envelope Proteins , Recombinant Proteins , Immunization , Kidney , Classical Swine Fever/prevention & control , Antibodies, Viral
14.
J Hazard Mater ; 443(Pt B): 130245, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36332278

ABSTRACT

Bioleaching is intensively investigated for recovering valuable metals such as Li, Co, Ni and Cu. Nickel ion stress threatens the health of microorganisms when Ni2+ starts to accumulate in the leachate during the bioleaching of materials that are rich in Ni, such as spent lithium-ion batteries. The possible mechanisms underlying the response of S. thermosulfidooxidans to nickel ion stress were analyzed using a multi-scale approach. Under the condition of nickel ion stress, high concentrations of nickel ions were immobilized by extracellular polymeric substances, while concentrations of nickel ions inside the cells remained low. The intracellular adenosine triphosphate (ATP) concentration and H+-ATPase activity increased to maintain normal cell growth and metabolic activities. Scavenging abilities of S. thermosulfidooxidans for hydrogen peroxide and superoxide anion were enhanced to reduce oxidative damage induced by nickel ion stress. There were 734 differentially expressed genes identified by RNA-seq under nickel ion stress. Most of them were involved in oxidative phosphorylation, glutathione metabolism and genetic information processing, responsible for intracellular energy utilization, intracellular antioxidant capacity and DNA damage repair, respectively. The results of this study are of major significance for in-depth understanding of the mechanisms of acidophilic microorganisms' resistance to metal ions.


Subject(s)
Lithium , Nickel , Nickel/toxicity , Electric Power Supplies , Ions
15.
Bioresour Bioprocess ; 10(1): 19, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-38647921

ABSTRACT

In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.

16.
Bioresour Bioprocess ; 10(1): 89, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38647954

ABSTRACT

During the ex vivo expansion of umbilical cord-derived mesenchymal stem cells (hUCMSCs) in a stirred tank bioreactor, the formation of cell-microcarrier aggregates significantly affects cell proliferation and physiological activity, making it difficult to meet the quantity and quality requirements for in vitro research and clinical applications. In this study, computational fluid dynamic (CFD) simulations were used to investigate the effect of an impeller structure in a commercial spinner flask on flow field structure, aggregate formation, and cellular physiological activity. By designing a modified impeller, the aggregate size was reduced, which promoted cell proliferation and stemness maintenance. This study showed that increasing the stirring speed reduced the size of hUCMSC-microcarrier aggregates with the original impeller. However, it also inhibited cell proliferation, decreased activity, and led to spontaneous differentiation. Compared to low stirring speeds, high stirring speeds did not alter the radial flow characteristics and vortex distribution of the flow field, but did generate higher shear rates. The new impeller's design changed the flow field from radial to axial. The use of the novel impeller with an increased axial pumping rate (Qz) at a similar shear rate compared to the original impeller resulted in a 43.7% reduction in aggregate size, a 37.4% increase in cell density, and a better preservation of the expression of stemness markers (SOX2, OCT4 and NANOG). Increasing the Qz was a key factor in promoting aggregate suspension and size reduction. The results of this study have significant implications for the design of reactors, the optimisation of operating parameters, and the regulation of cellular physiological activity during MSC expansion.

17.
Biologicals ; 80: 35-42, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36114098

ABSTRACT

Influenza is a global public health issue leading to widespread morbidity and mortality with devastating economic loss annually. Madin-Darby Canine Kidney (MDCK) cell line has been a major cell line for influenza vaccine applications. Though many details of the host metabolic responses upon influenza A virus (IAV) infection have been documented, little is known about the metabolic reprogramming features of a hyper-productive host for IAV vaccine production. In this study, a MDCK cell clone H1 was shown to have a particular high productivity of 30 × 103 virions/cell. The glucose and amino acid metabolism of H1 were evaluated, indicating that the high producer had a particular metabolic reprogramming phenotype compared to its parental cell line (P): elevated glucose uptake, superior tricarboxylic acid cycle flux, moderate amino acid consumption, and better regulation of reactive oxygen species. Combined with the stronger mitochondrial function and mild antiviral and inflammatory responses characterized previously, our results indicated that the high producer had a sufficient intracellular energy supply, and balanced substrate distribution for IAV and host protein synthesis as well as the intracellular redox status. Understanding of these metabolic alterations paves the way for the rational cell line development and reasonable process optimization for high-yield influenza vaccine production.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Dogs , Animals , Humans , Madin Darby Canine Kidney Cells , Oxidation-Reduction , Amino Acids
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(7): 881-888, 2022 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-35848186

ABSTRACT

Objective: To construct three-dimensional (3D) pre-vascularized microstructures and explore the promoting effect of human fibroblasts (HFs) on the sprout and migration of human umbilical vein endothelial cells (HUVECs) in 3D co-culture system. Methods: HUVECs and HFs were cultured and the 3rd to 5th generation cells were selected for subsequent experiments. In 2D co-culture system, HFs were stained with PKH26 and the cell density was fixed, which co-cultured with HUVECs in different ratios (1∶4, 1∶1, 4∶1) and inoculation methods (HUVECs inoculation at 48 hours after HFs, direct mixed inoculation). Then the formation of vascular like structures was observed under fluorescence microscope. In 3D co-culture system, HUVECs and HFs were labeled with green fluorescent protein and red fluorescent protein by lentivirus transfection, respectively. They were inoculated on porous micro-carriers followed by dynamically culturing in rotating bottles to prepare HF, HUVEC, HF-EC, or HF&EC microstructures. The cell growth in microstructures was testing by low permeability crystal violet staining. Subsequently, the microstructures were embedded in fibrin gel and the cell growth and adhesion in HF and HUVEC microstructures were observed by laser confocal microscopy. Laser confocal microscope were also used to observe the sprouts of 4 kinds of microstructures, as well as the cell composition, the number and length of sprouts from HF-EC and HF&EC microstructures. HFs conditioned medium was prepared to observe its effect on sprouts of HUVEC microstructures with DMEM as control group. Results: In 2D co-culture system, HFs pre-culturing was helpful to the formation and stability of vascular like structures, and the best effect was when the ratio of two kinds of cells was 1∶1. In 3D co-culture system, it was found that the cells grew well on micro-carriers and had the ability of pre-vascularization. HUVEC microstructures did not sprout, but HF, HF-EC, and HF&EC microstructures could which indicated a good vascularization ability. The HF-EC microstructures were superior to HF&EC microstructures in terms of sprouts length and number ( P<0.05). The tubes sprouting from co-cultured group were composed of HFs and HUVECs, and HF microstructures migration preceded HUVEC microstructures always, and their migration trajectories were the same. HUVEC microstructures could sprout when cultured in HFs conditioned media. Conclusion: HF-HUVEC pre-vascularized microstructures can be prepared by pre-culturing HFs before HUVECs and with the cell ratio at 1∶1 in a rotating bottle. In 3D co-culture system, HFs can promote and guide the sprout of HUVECs.


Subject(s)
Fibroblasts , Neovascularization, Pathologic , Cell Proliferation , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Physiologic
20.
Biotechnol Prog ; 38(5): e3279, 2022 09.
Article in English | MEDLINE | ID: mdl-35661450

ABSTRACT

As a water-soluble macromolecule polysaccharide, xanthan gum (XG) has several biological activities, such as antitumor, antiviral, and immunomodulatory function. However, the effect of XG on the proliferation and cytotoxicity of cytokines induced killer (CIK) cells is rarely studied. In this study, the effect of XG on CIK cells derived from peripheral blood was investigated by analyzing the expansion fold of total cells, phenotype, cytotoxicity, degranulation, and apoptosis in serum-free medium. The results showed that the expansion fold of total cells with 100 µg/ml XG which molecule weight is 2.95 × 106 Da reached 4534.0 folds, significantly higher than that without XG (1299.0 folds, p < 0.05). The percentage of main effector cells-CD3+ CD56+ cells increased to 25.5% and the cytotoxic activity of CIK cells increased to 45.3%. The cell proportions of expression granzyme B and perforin that related to cytotoxicity in CIK cells reached 53.6% and 48.3%, respectively, significantly higher than 27.5% and 37.5% in the group without XG (p < 0.05). Collectively, XG could stimulate the ex vivo expansion of CIK cells and enhance the cytotoxicity of expanded CIK cells. The above results provide technical support for optimizing the expansion process of CIK cells ex vivo.


Subject(s)
Cytokine-Induced Killer Cells , Antiviral Agents/pharmacology , Cells, Cultured , Cytokine-Induced Killer Cells/metabolism , Granzymes/metabolism , Granzymes/pharmacology , Perforin/metabolism , Perforin/pharmacology , Polysaccharides, Bacterial , Tumor Necrosis Factor-alpha , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...