Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(12): 11498-11506, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30830736

ABSTRACT

One major challenge for the further development of solid oxide fuel cells is obtaining high-performance cathode materials with sufficient stability against reactions with CO2 present in the ambient atmosphere. However, the enhanced stability is often achieved by using material systems exhibiting decreased performance metrics. The phenomena underlying the performance and stability trade-off has not been well understood. This paper uses antimony-doped SrFeO3-δ as a model material to shed light on the relationship between the structure, stability, and performance of perovskite-structured oxides which are commonly used as cathode materials. X-ray absorption revealed that partial substitution of Fe by Sb leads to a series of changes in the local environment of the iron atom, such as a decrease in the iron oxidation state and increase in the oxygen coordination number. Theoretical calculations show that the structural changes are associated with an increase in both the oxygen vacancy formation energy and metal-oxygen bond energy. The area-specific resistance (ASR) of the perovskite oxide increases with Sb doping, indicating a deterioration of the oxygen reduction activity. Exposure of the materials to CO2 leads to depressed oxygen desorption and an increased ASR, which becomes less pronounced at higher Sb doping levels. Origin of the stability-performance trade-off is discussed based on the structural parameters.

2.
ChemSusChem ; 11(19): 3423-3430, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30058140

ABSTRACT

Substitution of anions such as F- and Cl- can effectively improve the stability of proton-conducting electrolytes at no expense to proton conduction. However, during operation, F- and Cl- in electrolytes can transfer to the cathodes, which reduces the stability of the electrolytes. In this work, F- -doped Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-δ [Ba0.5 Sr0.5 Co0.8 Fe0.2 O2.9-δ F0.1 (F-BSCF)] was prepared as a potential cathode for proton-conducting solid oxide fuel cells with BaCe0.8 Sm0.2 F0.1 O2.85 electrolyte. The incorporation of F- in the cathode depressed F- diffusion from the electrolyte and improved the stability of button cells. Temperature-changing X-ray photoelectron spectroscopy and electronic conductivity relaxation results demonstrated that the incorporation of F- enhanced the oxygen incorporation kinetics at intermediate temperatures and improved the cathode catalytic performance. Moreover, a button cell prepared with this novel cathode was stable for 270 h at a current density of 300 mA cm-2 and 700 °C, which was much superior than those containing a BSCF cathode.

3.
ACS Appl Mater Interfaces ; 10(2): 1761-1770, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29282974

ABSTRACT

Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu2Fe1.8Co0.2O7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H2 (∼3% H2O) and 10% H2O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La0.6Sr0.4Co0.2Fe0.8O3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

4.
RSC Adv ; 8(47): 26448-26460, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541048

ABSTRACT

Exploring mechanisms for sluggish cathode reactions is of great importance for solid oxide fuel cells (SOFCs), which will benefit the development of suitable cathode materials and then accelerate cathode reaction rates. Moreover, possible reaction mechanisms for one cathode should be different when operating in oxygen ion conducting SOFCs (O-SOFC) and in proton conducting SOFCs (P-SOFCs), and therefore, they lead to different reaction rates. In this work, a Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7 (SFO), was selected as a promising cathode for both O-SOFCs and P-SOFCs. Using the first-principles approach, a microscopic understanding of the O2 reactions over this cathode surface was investigated operating in both cells. Compared with La0.5Sr0.5Co0.25Fe0.75O3 (LSCF), the low formation energies of oxygen vacancies and low migration energy barriers for oxygen ions in SFO make oxygen conduction more preferable which is essential for cathode reactions in O-SOFCs. Nevertheless, a large energy barrier (2.28 eV) is predicted for oxygen dissociation reaction over the SFO (001) surface, while there is a zero barrier over the LSCF (001) surface. This result clearly indicates that SFO shows a weaker activity toward the oxygen reduction, which may be due to the low surface energies and the specific R-P structure. Interestingly, in P-SOFCs, the presence of protons on the SFO (001) surface can largely depress the energy barriers to around 1.46-1.58 eV. Moreover, surface protons benefit the oxygen adsorption and dissociation over the SFO (001) surface. This result together with the extremely low formation energies and migration energy barriers for protons seem to suggest that SFO could work more effectively in P-SOFCs than in O-SOFCs. It's also suggested that too many protons at the SFO surface will lead to high energy barriers for the water formation process, and thus that over-ranging steam concentrations in the testing atmosphere may have a negative effect on cell performances. Our study firstly and clearly presents the different energy barriers for one cathode performing in both O- and P-SOFCs according to their different working mechanisms. The results will be helpful to find the constraints for using cathodes toward oxygen reduction reactions, and to develop effective oxide cathode materials for SOFCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...