Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(51): 57440-57448, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36512440

ABSTRACT

Artificial neurons as the basic units of spiking neural network (SNN) have attracted increasing interest in energy-efficient neuromorphic computing. 2D transition metal dichalcogenide (TMD)-based devices have great potential for high-performance and low-power artificial neural devices, owing to their unique ion motion, interface engineering, and resistive switching behaviors. Although there are widespread applications of TMD-based artificial synapses in neural networks, TMD-based neurons are seldom reported due to the lack of bio-plausible multi-mechanisms to mimic leaking, integrating, and firing biological behaviors without external assistance. In this work, for the first time, a methodology is developed by introducing the hybrid effect of charge trapping (CT) and Schottky barrier (SB) in MoS2 FETs for barristor memory and one-transistor (1T) compact artificial neuron realization. By correlating the CT and SB processes, quasi-volatile and resistive switching behaviors are realized on the fabricated MoS2 FET and utilized to mimic the accumulating, leaking, and firing biological behaviors of neurons. Therefore, based on a single quasi-volatile CT-SB MoS2 barristor memory, a 1T compact neuron of the basic leaky-integral-and-fire (LIF) function is demonstrated without a peripheral circuit. Furthermore, a spiking neural network (SNN) based on the CT-SB MoS2 barristor neurons is simulated and implemented in pattern classification with high accuracy approaching 95.82%. This work provides a highly integrated and inherently low-energy implementation for neural networks.


Subject(s)
Molybdenum , Neural Networks, Computer , Neurons/physiology , Synapses/physiology
2.
Sci Rep ; 6: 36673, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819349

ABSTRACT

A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

SELECTION OF CITATIONS
SEARCH DETAIL
...