Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Psychiatry ; 23(1): 682, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726709

ABSTRACT

BACKGROUND: Prescribing the optimal antipsychotic treatment to schizophrenia is very important as it is well established that patients have different sensitivity to the available antipsychotic drugs. The genotype of the HTR2A T102C (rs6313) polymorphism has been suggested to affect the efficacy of antipsychotic drugs, but the results of different studies have been inconsistent METHODS: In this study, a meta-analysis was used to ascertain the association between allele and genotype polymorphism of rs6313 and the efficacy of antipsychotic drugs. Related studies publicated from January 1995 to December 2021 were retrieved from PubMed, Embase, ScienceDirect, and Web of Science databases. The correlations between allele and genotype polymorphism of rs6313 and the responder rate and scale score reduction rate of antipsychotics were analyzed. In addition, subgroup analyses were performed on time, drug, and ethnicity. RESULTS: A total of 18 studies were included. The meta-analysis showed that allele and genotype polymorphisms at the rs6313 locus overall were not associated with antipsychotic drug responder rate or scale score reduction rate. Ethnicity subgroup analysis showed that antipsychotic drugs were more effective in patients with allele T in the Caucasian population. Indian patients with the TT genotype had the lowest scale score reduction rate and poor drug treatment effect. East Asian patients with the TC genotype had better treatment effect, whereas in patients with the CC genotype, the treatment was less effective. Drug subgroup analysis showed that patients with the TC genotype treated with clozapine had the highest responder rate and score reduction rate. CONCLUSIONS: The association between rs6313 polymorphism and the efficacy of antipsychotic drugs is mainly influenced by drug and ethnicity. Caucasian patients with the T allele respond better to drug therapy, and Asian patients with TC genotype. The TC genotype was also a good predictor of the efficacy of clozapine treatment.


Subject(s)
Antipsychotic Agents , Clozapine , Receptor, Serotonin, 5-HT2A , Humans , Alleles , Antipsychotic Agents/therapeutic use , Ethnicity , Genotype , Receptor, Serotonin, 5-HT2A/genetics
2.
Front Nutr ; 8: 697879, 2021.
Article in English | MEDLINE | ID: mdl-34485361

ABSTRACT

Lycopene is an important natural red pigment with strong singlet oxygen and peroxide free radical quenching ability. Ethanol directly destroys the epithelial cells of gastric mucosa, causing oxidative damage and inflammation. To evaluate the effect of lycopene on the ethanol induced gastric injury, 112 adult male Kunming mice were randomly divided into normal control, lycopene control, gastric injury control, omeprazole (20 mg/kg) positive control, and lycopene experimental groups (at doses of 10, 50, 100, and 150 mg/kg body weight) in this study. The general and pathological evaluation, gastric secretion, as well as the levels of antioxidant and inflammatory factors were detected. In lycopene experimental groups, the amount of gastric juice were lower than that in the gastric injury control group; the levels of T-SOD, and the levels of MDA and inflammatory factors (MMP-9 and MCP-1) decreased. However, general and pathological evaluation of gastric tissues revealed that lycopene (especially at high doses) could aggravate acute gastric mucosal injury induced by ethanol. Therefore, lycopene (especially at high doses) aggravates acute gastric mucosal injury caused by ethanol, but this was not due to oxidative stress or inflammatory factors. In lycopene control group, the levels of MTL, T-SOD, and NO increased, but the levels of ALT and AST decreased, indicating that lycopene has a protective effect on the stomach and liver when ethanol wasn't taken. It reminds us that, when alcohol is consumed in large quantities, consumption of lycopene products should be carefully considered.

3.
Ecology ; 100(11): e02828, 2019 11.
Article in English | MEDLINE | ID: mdl-31323118

ABSTRACT

Elucidating the variation of allocation pattern of ecosystem net primary productivity (NPP) and its underlying mechanisms is critically important for understanding the changes of aboveground and belowground ecosystem functions. Under optimal partitioning theory, plants should allocate more NPP to the organ that acquires the most limiting resource, and this expectation has been widely used to explain and predict NPP allocation under changing precipitation. However, confirmatory evidence for this theory has mostly come from observed spatial variation in the relationship between precipitation and NPP allocation across ecosystems, rather than directly from the influences of changing precipitation on NPP allocation within systems. We performed a 6-yr five-level precipitation manipulation experiment in a semiarid steppe to test whether changes in NPP allocation can be explained by the optimal partitioning theory, and how water requirement of plant community is maintained if NPP allocation is unaltered. The 30 precipitation levels (5 levels × 6 yr) were divided into dry, nominal, and wet precipitation ranges, relative to historical precipitation variation over the past six decades. We found that NPP in both aboveground (ANPP) and belowground (BNPP) increased nonlinearly as precipitation increased, while the allocation of NPP to BNPP (fBNPP ) showed a concave quadratic relationship with precipitation. The declined fBNPP as precipitation increased in the dry range supported the optimal partitioning theory. However, in the nominal range, NPP allocation was not influenced by the changed precipitation; instead, BNPP was distributed more in the surface soil horizon (0-10 cm) as precipitation increased, and conversely more in the deeper soil layers (10-30 cm) as precipitation decreased. This response in root foraging appears to be a strategy to satisfy plant water requirements and partially explains the stable NPP allocation patterns. Overall, our results suggest that plants can adjust their vertical BNPP distribution in response to drought stress, and that only under extreme drought does the optimal partitioning theory strictly apply, highlighting the context dependency of the adaption and growth of plants under changing precipitation.


Subject(s)
Ecosystem , Rain , Biomass , Plants , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...