Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134413, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669935

ABSTRACT

Heavy metal pollution at an abandoned smelter pose a significant risk to environmental health. However, remediation strategies are constrained by inadequate knowledge of the polymetallic distribution, speciation patterns, and transformation factors at these sites. This study investigates the influence of soil minerals, heavy metal occurrence forms, and environmental factors on heavy metal migration behaviors and speciation transformations. X-ray diffraction analysis revealed that the minerals associated with heavy metals are mainly hematite, franklinite, sphalerite, and galena. Sequential extraction results suggest that lead and zinc are primarily present in the organic-sulfide fractions (F4) and residual form (F5) in the soil, accounting for over 70% of the total heavy metal content. Zinc displayed greater instability in carbonate-bound (16%) and exchangeable (2%) forms. The migration and diffusion patterns of heavy metals in the subsurface environment were visualized through the simulation of labile state heavy metals, demonstrating high congruence with groundwater pollution distribution patterns. The key environmental factors influencing heavy metal stable states (F4 and F5) were assessed by integrating random forest models and redundancy analysis. Primary factors facilitating Pb transformation into stable states were available phosphorus, clay content, depth, and soil organic matter. For Zn, the principal drivers were Mn oxides, soil organic matter, clay content, and inorganic sulfur ions. These findings enhance understanding of the distribution and transformation of heavy metal speciation and can provide valuable insights into controlling heavy metal pollution at non-ferrous smelting sites.

2.
Environ Pollut ; 341: 122939, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37981182

ABSTRACT

Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.


Subject(s)
Groundwater , Metals, Heavy , Soil Pollutants , Zinc/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Soil , China
SELECTION OF CITATIONS
SEARCH DETAIL
...